Suggested Answer
<i>Precision</i> is defined as a measure of how close the experimental values are to each other.
Accuracy is defined as a measure of how close the experimental values are to the true value of the physical quantity.
$g = \frac{4\pi^2 L}{T^2} = \frac{4\pi^2 \left(50.0 \times 10^{-2}\right)}{1.42^2} = 9.78933 \text{ m s}^{-2}$
$\pm \frac{\Delta g}{g} = \pm \left(\frac{\Delta L}{L} + 2\frac{\Delta T}{T}\right)$
$\pm \Delta g = \pm \left(\frac{0.2}{50.0} + \frac{0.02}{1.42}\right) \times 9.78933 = \pm 0.17704$
$g = \pm 0.2 \text{ m s}^{-2} (1 \text{ s.f.})$ $g = 9.8 \pm 0.2 \text{ m s}^{-2}$
There is error due to human reaction time. Taking a large number of oscillations will reduce the fractional/percentage uncertainty of the measurement of time. The absolute uncertainty is the same but taking more oscillations reduces the effect in the calculation of T . ($\Delta T = \Delta t / n$ where $\Delta t = \pm 0.2 - 0.4$ s (human reaction time) and n is the number of oscillations.)
Taking upwards as positive,
$v^2 = u^2 + 2as$
$0^2 = u^2 + 2(-9.81)(27)$
u = 23.02
= 23 m s ⁻¹ (2 s.f.) (shown)
23 0 R 2.34 6.0 t/s

JC2 2024 Page 1 of 7

(-)(::)	Other in the line with the continue and disent
(a)(ii)	Straight line with negative gradient.
	Initial velocity of 23 m s ⁻¹ .
	Max height at 2.34 s.
	Graph stops at 6.0 s with velocity of -35.9 m s ⁻¹ .
	$\frac{v-u}{t}=g$
	$t_{\text{max height}} = \frac{v - u}{g} = \frac{0 - (-23)}{9.81} = 2.34 \text{ s}$
	At $t = 6.0 \text{ s}$
	v = u + at = 23 - (9.81)(6.0)
	$=-35.9 \text{ m s}^{-1}$
(a)(iii)	Steeper slope before $v = 0$.
	Gentler slope after $v = 0$.
	Gradient at $v = 0$ should be parallel to graph in (a)(ii).
(b)	energy / J
	TE /
	/ E
	G
	0
	GPE linear with negative gradient.
	EPE parabolic shape starting from x_0 .
	KE shape and correct KE value at x_0 and x_s
	(TE is constant).
3	
(a)	The resultant force acting on the object must be zero.
	The resultant torque about any axis is zero.
(b)	Taking moments about the hinge,
	$2T\left(\frac{3}{5}\right)(0.800) = W\left(\frac{1.3}{2}\right)$
	$2(47.5)\left(\frac{3}{5}\right)(0.800) = W\left(\frac{1.3}{2}\right)$
	W = 70.2 N
	$m = \frac{70.2}{9.81} = 7.2 \text{ kg (2 s.f.)}$

JC2 2024 Page 2 of 7

(c)	The tension in the cables has a herizontal component, while the weight has enly vertical
(c)	The tension in the cables has a horizontal component, while the weight has only vertical
	component. For the canopy to be in equilibrium, there must be a horizontal component
	by the hinge away from the hinge.
	The sum of the vertical component of the tensions in both cables is less than the weight,
	hence the force by the hinge has a vertical upward component.
4	
4	Manufación la conferencia de la conferencia del
(a)	Newton's law of gravitation states that every point mass attracts every other point mass
	with a force that is directly proportional to the product of their masses
41.545	and inversely proportional to the square of the distance between them.
(b)(i)	Gravitational force provides the centripetal force.
	$\frac{GMm}{r^2} = \frac{mv^2}{r}$
	r^2 r
	Kinetic energy = $\frac{1}{2}mv^2$
	2
	$=\frac{GMm}{2r}$
	$={2r}$
(b)(ii)	Total energy
	= Kinetic energy + Gravitational potential energy
	$=\frac{GMm}{2r}+(-\frac{GMm}{r})$
	$=-\frac{GMm}{2r}$
(-\(!\	
(c)(i)	Period of rotation of satellite, $T = 24.6 \times 3$
	= 73.8 hours
	Gravitational force of Mars on satellite provides the centripetal force.
	$\frac{GMm}{r^2} = mr(\frac{2\pi}{T})^2$
	$r^3 = \frac{(6.67 \times 10^{-11})(6.39 \times 10^{23})(73.8 \times 60 \times 60)^2}{10^{-11}}$
	$4\pi^2$
	$r = 4.24 \times 10^7 \mathrm{m} (3 \mathrm{s.f.})$
(c)(ii)	Work done = $-\frac{GMm}{2(2r)} - (-\frac{GMm}{2r})$
	$\frac{1}{2(2r)} - \frac{1}{2(2r)} - \frac{1}{2r}$
	1 , GMm.
	$=\frac{1}{2}(\frac{GMm}{2r})$
	$(6.67 \times 10^{-11})(6.39 \times 10^{23})(470)$
	$=\frac{(6.67\times10^{-11})(6.39\times10^{23})(470)}{4(4.24\times10^7)}$
	= 118 MJ (3 s.f.)
(4)	· · ·
(d)	Total energy will be reduced. This means that the radius of circular orbit will gradually
	decrease.
	Decreasing circular orbit means that the kinetic energy increases and thus the speed of
	the satellite would increase.

JC2 2024 Page 3 of 7

5	
(a)(i)	The <i>volt</i> is defined as the potential difference between two points in a circuit where 1 J
()()	of electrical energy is converted to other forms of energy when 1 C of charge passes
	from one point to the other.
(a)(ii)	e.m.f. is the amount of non-electrical energy converted into electrical energy per unit
()()	charge passing through the terminals of the cell (source).
	p.d. is the amount of electrical energy converted to other forms of energy per unit charge
	passing from one point to the other.
(b)(i)	When current in P is 0.15 A, the p.d. across P is 2.70 V.
()()	The p.d. across Q is also 2.70 V.
	From the <i>I-V</i> graph of Q, the current through Q is 0.0900 A.
	Total current in battery = current in P + current in Q
	= 0.15 + 0.0900
	= 0.24 A
(b)(ii)	P.d. across R = 4.5 – 2.70 = 1.8 V
	Posistance of P = 1.8
	Resistance of R = $\frac{1.8}{0.24}$ = 7.5 Ω
(b)(iii)	In the given circuit,
	Posistance of P = 2.70
	Resistance of P = $\frac{2.70}{0.15}$ = 18 Ω
	Posistance of O = 2.70
	Resistance of Q = $\frac{2.70}{0.0900}$ = 30.0 Ω
	Since resistance $R = \frac{\rho L}{A}$, $L = \frac{RA}{\rho}$
	Since resistance $K = \frac{1}{A}$, $L = \frac{1}{\rho}$
	Since $A \propto d^2$, $L \propto Rd^2$: $\rho = \text{constant}$
	$\frac{L_{P}}{L_{Q}} = \left(\frac{R_{P}}{R_{Q}}\right) \left(\frac{d_{P}}{d_{Q}}\right)^{2}$
	$\int \overline{L_{Q}} - \left(\overline{R_{Q}}\right) \left(\overline{d_{Q}}\right)$
	$= \left(\frac{18}{30}\right) \left(\frac{2}{1}\right)^2$
	$=\left \frac{10}{30}\right \left \frac{2}{1}\right $
	= 2.4
(b)(iv)	
(b)(iv)	When Q stops conducting, effective resistance of the two lamps increases. By potential divider principle, the p.d. across lamp P increases.
	The current through P also increases as no current passes through Q.
	From the graph, as p.d. across P (or current in P) increases, its resistance increases.
	i rom the graph, as p.u. across r (or current in r) increases, its resistance increases.
6	
(a)	Random: Impossible to predict when a particular nucleus in a sample is going to decay.
ν-/	Spontaneous: The decay of a nucleus is not affected by by the presence of other nuclei,
	chemical reactions or physical conditions such as temperature and pressure.
(b)(i)	$\begin{array}{c} 210 \\ 84 \end{array} Po \rightarrow \begin{array}{c} 206 \\ 82 \end{array} Pb + {}^{4}_{2} He \end{array}$
· / (· /	841 0 7 821 0 1 2110

JC2 2024 Page 4 of 7

(1-)(!!)	
(b)(ii)	$KE = \frac{p^2}{2m}$
	Since magnitude of <i>p</i> is the same,
	$\frac{KE_{\alpha}}{KE_{Pb}} = \frac{m_{Pb}}{m_{\alpha}} = \frac{206}{4}$
	$\frac{KE_{\alpha}}{KE_{Pb}} = 51.5$
/1 \ /111\	
(b)(iii)	$A_o = \lambda N_o = \frac{\ln 2}{138 \times 24 \times (60)^2} (4.2 \times 10^{11}) = 2.44 \times 10^4 \text{ Bq}$
	$A = A_o e^{-\left(\frac{\ln 2}{t_{1/2}}\right)^t} = A_o e^{-\left(\frac{\ln 2}{138}\right)600}$
	A = 1200 Bq (2 s.f.)
(b)(iv)	The reading will be lower. Particles are emitted in all directions and only a proportion will be detected by the counter.
(c)(i)	By conservation of momentum, for a two particle system, the ratio of the speeds of the particles is fixed (inverse ratio of masses).
	By conservation of energy, energy released per decay is constant, the speed of the beta
	particle emitted should be constant. However, the range of KE suggest that there must
	be a third particle.
(c)(ii)	Half-life of platinum is much longer than that of gold.
	Formation of gold is slower than its decay, hence gold will be the nuclei of the smallest
	percentage.
7	
(a)(i)	$P = \rho g h$
	$=1030 \times 9.81 \times 400$
	= 4.04 MPa (3 s.f.)
(a)(ii)	$\sigma = \frac{d_0 P}{2t}$
	$O = \frac{1}{2t}$
	$t > \frac{d_0 P}{d_0 N} > \frac{6.30 \times 4.04 \times 10^6}{10.00000000000000000000000000000000000$
	$t \ge \frac{d_0 P}{2\sigma} \ge \frac{6.30 \times 4.04 \times 10^6}{2 \times 550 \times 10^6}$
	<i>t</i> ≥ 0.0231 m
	= 2.4 cm (round up to 2 s.f.) (shown)
(a)(iii)	The thickness of the hull is much smaller than the diameter/radius of the submarine.
(a)(iv)	гσ
	$E = \frac{\sigma}{\frac{d_x}{d_0}}$
	$\sigma d_0 = 550 \times 10^6 \times 6.30$
	$d_{x} = \frac{\sigma d_{0}}{E} = \frac{550 \times 10^{6} \times 6.30}{205 \times 10^{9}}$
	$d_x = 16.9 \mathrm{mm}$
	New diameter = $6.30 - (16.9 \times 10^{-3}) = 6.28 \text{ m} (3 \text{ s.f.})$

JC2 2024 Page 5 of 7

(a)(v)	A heavier submarine with a thicker hull has reduced manoeuvrability and slower speeds
	due to increased drag / requires higher power with a bigger engine.
	OR
	A thicker hull translates to a heavier submarine which requires a higher ballast capacity for buoyancy. This reduces room for crew and equipment.
	OR
	Building extremely thick hulls requires specialized materials and techniques, making
	them more expensive and time-consuming to manufacture.
(b)(i)	Sound waves are longitudinal waves
	OR THE RESERVE OF THE PROPERTY
	The displacement of the water particles/ molecules of the medium is parallel to (or along) the direction of wave propagation
	The transfer of energy is via changing pressure (varying rarefactions and
	compressions).
(b)(ii)	$c = 1449.2 + 4.6T - 0.055T^2 + 0.00029T^3$
	+(1.34-0.010T)(S-35)+0.016D
	$c = 1449.2 + 4.6(28) - 0.055(28)^2 + 0.00029(28)^3$
	$+(1.34-0.010(28))(\frac{33}{1000}-35)+0.016(400)$
	+(1.54 - 0.010(28))(1000 - 33) + 0.010(400)
	$c = 1500 \mathrm{m \ s^{-1}} (2 \mathrm{s.f.})$
(b)(iii)	Water is a less compressible medium / higher density medium as compared to air.
	OR
	Water molecules are at a closer proximity that enables faster transfer of vibrational energy between the molecules.
(b)(iv)	••
	$I \text{ at M} = \frac{1}{S_1} = \frac{1}{4\pi d^2}$
	$I \text{ at M} = \frac{P}{S_{\perp}} = \frac{P}{4\pi d^2}$ $P \text{ at M} = \frac{P}{4\pi d^2} S$
	$P \text{ at W} = \frac{4\pi d^2}{4\pi d^2} S$
	Reflected P at $M = \frac{P}{4\pi d^2} S$
	Reflected I from M $(I_{\rm M}) = \frac{PS}{A + I_{\rm M}^2} = \frac{PS}{A + I_{\rm M}^2} = \frac{PS}{A + I_{\rm M}^2}$
	Reflected I from M $(I_{\rm M}) = \frac{PS}{4\pi d^2} \frac{1}{\frac{4\pi d^2}{2}} = \frac{PS}{8\pi^2 d^4}$
	,
	$d = \left[\frac{PS}{(I_M)8\pi^2} \right]^{\frac{1}{4}} $ (shown)
(c)(i)	$P = Fv = \frac{1}{2}C_d\rho v^2 A v$
	$P = \frac{1}{2}(0.1)(1030)(\frac{37.0 \times 1000}{60 \times 60})^3(\frac{\pi (6.30)^2}{4})$
	$P = 1.74 \times 10^6 \text{ W (3 s.f.)}$
	1 111 17 10 11 (0 0.11)

JC2 2024 Page 6 of 7

(c)(ii)

The submarine includes irregular shaped features such as control tower, fins and anntennas that increases drag coefficient/area and hence increasing the power required.

OR

The flow of sea water over the submarine may turbulent, hence increasing the drag coefficient and the increasing power required.

OR

The hull of the submarine is not smooth ie covered by barnacles, hence increasing the drag coefficient and increasing the power required.

OR

The density of seawater is increased at other regions and hence more power is required. OR

The efficiency of the engine is not 100%. Hence more power is required.

JC2 2024 Page 7 of 7