Circular Motion Discussion Questions Suggested Solutions

D1	Given mass, $m = 2.0 \times 10^{-3}$ kg (S.I unit) and time for 3 revolutions, $3T = 3.14$ s $\Rightarrow T = 3$. (a) $\theta = \omega t = \frac{2\pi}{3.14/3} \times (2) = 12.0$ rad $= 12.0 - 2\pi = 5.7$ rad (b) $r = 0.05$ m $v = r\omega = \frac{2\pi}{3.14/3} \times 0.05 = 0.30 m s^{-1}$ (c) $a = r\omega^2$ Writing this statement is proceeded.			
		(d) Note: Frictional force, f, provides the centripetal force, F _c . $f = F_c = ma_c$ $= (2.0 \times 10^{-3})(1.800)$ $= 3.600 \times 10^{-3}$ $= (3.600 \times 10^{-3})(1.800)$		
D2		Tension, $T = k x = 40 \times 0.20 = 8.0 \text{ N}$ Tension provides the centripetal force , $T = \frac{mv^2}{r}$ $v = \sqrt{\frac{Tr}{m}} = \sqrt{\frac{8 \times 0.70}{0.050}} = 10.58 = 11 \text{ m s}^{-1}$ Answer: A		
D3		The external forces acting on the pendulum are tension (strictly speaking, force of string on pendulum) and weight. The horizontal component of the tension provides the centripetal force for the pendulum to turn right. (Note that the centripetal force should not be drawn as a third force .) Answer: C		
D4		Frictional force of road on car <i>F</i> provides for centripetal force for car to round the corner. $F = m \frac{v^2}{r}$ Since <i>m</i> and <i>r</i> remain the same, $F \propto v^2$ $\frac{F_{wet}}{F_{dry}} = \left(\frac{v_{wet}}{v_{dry}}\right)^2$ $\frac{1}{2} = \left(\frac{v_{wet}}{20}\right)^2$ $v_{wet} = \frac{20}{\sqrt{2}}$		
		Answer: U		

D5	(a)	Diagram 1. Frictional force of wall on person keeps him/her from sliding down.				
	(b)	$a_{\rm c} = r \omega^2 = 3.00 \times 5.00^2 = 75.0 {\rm m s^{-2}}$				
	(c)	$F = ma_c = 60 \times 75 = 4500 \text{ N}$				
		Normal contact force of wall on person provides for the centripetal acceleration.				
D6	(a)	For m_1 ,				
		$T_1 - T_2 = m_1 a_1$ (Newton's second law)				
		$a_1 = \frac{T_1 - T_2}{m_1} = \frac{4.5 - 2.9}{2.5} = 0.64 \text{ ms}^{-2}$				
	(b)	For <i>m</i> ₂ ,				
	(D)	$T_2 = m_2 a_2$ (Newton's second law)				
		$a_2 = \frac{T_2}{m_2} = \frac{2.9}{3.5} = 0.83 \text{ ms}^{-2}$ m_2				
		$a = \frac{V^2}{T_2}$				
		$r = \sqrt{2} r = \sqrt{0.64 \times 1.0} = 0.80 \text{ ms}^{-1}$				
		$v_1 = \sqrt{a_1 r_1} = \sqrt{0.04 \times 1.0} = 0.00 \text{ ms}^{-1}$ $v_2 = \sqrt{a_2 r_2} = \sqrt{0.83 \times 1.3} = 1.04 = 1.0 \text{ ms}^{-1}$				
D7	(a)	The tension in the string created by the weight, W of the washers provides the centripetal force for the bung to perform circular motion. If we let M = mass of washers and m = mass of rubber bung, then				
		Tension = $W = Mg = mr(\frac{2\pi}{T})^2$				
	$0.035 \times 9.81 = m(0.57)(\frac{2\pi}{18.2})^2 = 12.6g$					
		20				
	(b) If glass rod is twirled at just the right pace the paper clip can be maintained in a positio below the bottom of the glass tube. This ensures that the radius is kept constant at a k radius.					
	(c)(i)	$v = \sqrt{\frac{Mgr}{m}} = \sqrt{\frac{95 \times 10^{-3} \times 9.81 \times 0.57}{12.6 \times 10^{-3}}} = 6.49 \text{ m s}^{-1}$				
	(ii) There must exist an upward vertical component of the tension to balance the weigh rubber bung. If the string was purely horizontal no such component could exist.					
	(iii) In the vertical direction, forces acting on rubber bung					
		$T\sin\theta = mg$				
		Hence, $sin\theta = \frac{mg}{Mg} = \frac{12.6 \times 10^{-3}}{95 \times 10^{-3}}$				
		$\theta = 7.62^{\circ}$				

D8	(a)	String is just taut when particle reaches $C \rightarrow Tension T = 0$ Weight of particle provides for centripetal force
		$mg = \frac{mv_c^2}{l}$
		$v_C = \sqrt{gL}$ (shown) \sqrt{mg}
	(h)	By conservation of energy
	(d)	Initial total energy at the bottom = Final total energy at the top
		$\frac{1}{2}mv^{2} = \frac{1}{2}mv_{c}^{2} + mg(2L)$
		$\frac{1}{2}v^2 = \frac{1}{2}gL + g(2L)$
		$v^2 = gL + 4gL$
		$v = \sqrt{5gL}$
D9	(a)	Let v be the tangential velocity at A and m be the mass of the roller coaster.
		Using conservation of energy, Initial KE + initial GPE = final KE + final GPE
		$\frac{1}{2}mv_o^2 + mgh = \frac{mv^2}{2} + \frac{2}{3}mgh$
		$\frac{1}{2}mv_o^2 + \frac{1}{3}mgh = \frac{mv^2}{2}(1)$
		The resultant force on the roller coaster at A provides the centripetal force, Using N2L,
		$W - N = \frac{mv^2}{R}$
		When $N = 0$, v is maximum
		$mg = \frac{mv^2}{R}$
		$\frac{1}{2}Rmg = \frac{mv^2}{2}(2)$
		Sub (2) into (1), when v is maximum, v_o will also be maximum:
		$\frac{1}{2}mv_o^2 + \frac{1}{3}mgh = \frac{1}{2}Rmg$
		$v_o^2 = Rg - \frac{2}{3}gh$
		$v_o = \sqrt{g(R - \frac{2}{3}h)}$

	(b)	By conservation of energy,			
		$\frac{1}{2}mu^2 + much = much / (inst makes it to D =) final (C = 0)$			
		$\frac{1}{2}mv_0 + mgn = mgn (\text{just makes it to B} \rightarrow \text{infarke = 0})$	$\frac{-mv_o^2 + mgh = mgh'}{1}$ (just makes it to B \Rightarrow final KE = 0)		
		$gh' = \frac{1}{2}v_o^2 + gh$			
		$h' = \frac{1}{2} \frac{v_o^2}{a} + h$			
		$h' = \frac{1}{2} \frac{Rg - \frac{2}{3}gh}{g} + h$ $h' = \frac{2}{3}h + \frac{1}{2}R$			
D9	(c)	The acceleration is not uniform.			
D10		At point C, particle's velocity is entirely horizontal.			
		i.e. $v = -3.0 \text{ m s}^{-1}$			
		By conservation of energy,			
		Total energy at A = total energy at C Note that $a_c = r\omega^2$ is not applicable in this context. This			
		$KE_A = GPE_C + KE_C$ is because the angular speed	,		
		$\frac{1}{2}m(v_A^2 - v_C^2) = mg(2R)$ of the particle is not constant			
		2 throughout its vertical circular motion. The contributal			
		$R = \frac{5.0 - (-3.0)}{4a} = 0.408 \text{ m}$			
		v^2 3^2 speed of the particle changes			
		$a_{\rm c} = \frac{1}{R} = \frac{3}{0.408} = 22.1 {\rm m s^{-2}}$			
		Answer: D			
D11	(a)	$v = \frac{2\pi r}{T} = \frac{2\pi \times 7.0}{20.0} = 2.20 \text{ ms}^{-1}$			
	(b)	$F_c = \frac{mv^2}{r} = \frac{50 \times 2.2^2}{7.0} = 34.6 \text{ N}$			
	(c)	Considering the forces acting on Sasha at the top of the ride and			
		using N21 : $W - N = \frac{mv^2}{m}$			
		For Soche to fool weightloop at the tar of the ride $N = 0$			
		For Sasna to feel weightless at the top of the ride, $N = 0$ mv^2			
		$\frac{mv}{r} = mg$			
		$v = \sqrt{rg} = \sqrt{7.0 \times 9.81} = 8.29 \mathrm{ms}^{-1}$			
	(d)	At the bottom of the Ferris wheel,			
		$\frac{mv^2}{r} = N - mg$			
		$N = mg + \frac{mv^2}{r} = 2mg = 2 \times 50 \times 9.81 = 981 \text{ N}$ × C)		

