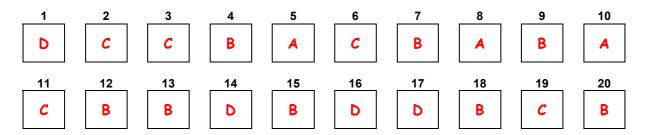
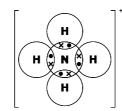


CHEMISTRY DEPARTMENT OF SCIENCE

A Methodist Institution Founded in 1886


CHEMICAL BONDING (EXTENSIONS) - ASSIGNMENT

Multiple-Choice Questions [20 Marks]


TOTAL SCORE

/ 30

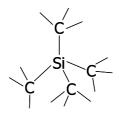
Write in your selected answer for the multiple-choice questions in the boxes provided.

- 1. How many chloride ions are adjacent to each sodium ion in a crystal of sodium chloride?
 - **A** 1
- **B** 2
- **C** 4
- **D** 6
- 2. An element **Q** reacts with chlorine to form a liquid of formula **Q**Cl₂. What could be the electronic configuration of **Q**?
 - **A** 2, 8, 1
- **B** 2, 8, 2 **C** 2, 8, 6
- **D** 2, 8, 8
- 3. A 'dot and cross' diagram showing the bonding in ammonium chloride (NH₄Cl) is shown.

From the above diagram, we can tell that ammonium chloride contains

A covalent bonds only.

both covalent and ionic bonds.


B ionic bonds only.

- neither covalent nor ionic bonds.
- 4. In a molecule of methane (CH₄), how many pairs of electrons are **not** involved in bonding?
 - **A** 0
- **B** 1
- **C** 2
- **D** 4
- 5. Which one of the following solids does **not** contain covalent bonds?
 - A copper
- diamond
- **C** methane
- **D** ice

6.	Wh	Which one of the following solids does not contain intermolecular forces?							
	A	graphite	В	iodine	С	sand	D	sulfur	
7. Which of the following substances would best be used as a refractory material, i.e. withstand very high temperatures?							al, i.e. able with		
	A B	a metal a metallic oxide			C D	a non-metallic oxida a plastic	e		
8.	Wh	Which of the following is not a property of pure calcium?							
	A B	It has a hard, strong It is able to conduct			C D	It is shiny in appea It is solid at room t			
9.	Wh	hich of the following elements would we expect to have the highest melting point?							
	A	argon	В	carbon	С	chlorine	D	mercury	
10. Graphite can be used for all of the following except									
	A B	as a drill bit and in l as a dry lubricant in		y-duty cutting. ustrial applications.		as a lead in pencils as an electrode to o		uct electricity.	
11.	In t	In the structure of graphite, sheets of carbon atoms are able to slide over each other easily							
	A B C D	due to the regular hexagonal arrangement of each sheet of carbon atoms. due to the weak intermolecular forces between the sheets of carbon atoms.						S.	
12.	The	The structure of diamond can best be described as							
	A B C D	a macromolecular structure with a tetrahedral arrangement of carbon atoms. a simple molecular structure with a octahedral arrangement of carbon atoms.							
13.	Silio	Silicon dioxide (SiO ₂) has a higher melting point than sodium chloride (NaCl) because the							
	A B C D	covalent bonds within SiO_2 are stronger than the electrostatic forces within NaCl. electrostatic forces within SiO_2 are stronger than the intermolecular forces within NaCl.							
14.	Wh	Which of the following is not a similarity between diamond and oxygen?							
	A B	They are both elements they both contain of			C D	They are both non- They both have sim		als. molecular structures.	

ALEX LEE/2010 PAGE 2 OF 5

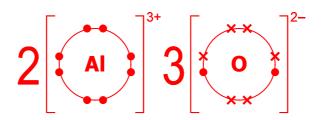
- 15. Aluminium and sodium are both in Period 3 of the Periodic Table. It is observed that aluminium is a significantly better conductor of electricity compared to sodium. Which of the following statements best explains this observation?
 - **A** Aluminium atoms are in a regular arrangement, whereas sodium atoms are not.
 - **B** Aluminium atoms have a greater number of valence electrons compared to sodium.
 - **C** Aluminium contains both positive and negative ions, unlike sodium.
 - **D** Aluminium is a solid at room temperature while sodium is a liquid.
- 16. Bromine and chlorine are both in Group VII of the Periodic Table, and exist as diatomic molecules. However, the melting point of bromine is -7 °C, while the melting point of chlorine is significantly lower at -102 °C. Which of the following statements best explains this observation?
 - **A** The covalent bonds in bromine require a larger amount of energy to overcome, compared to the electrostatic forces of attraction between chlorine molecules.
 - **B** The double covalent bonds present between the bromine atoms is stronger than the single covalent bond present between the chlorine atoms.
 - **C** The electrostatic forces of attraction between bromine molecules is stronger than the intermolecular forces of attraction between chlorine molecules.
 - **D** The intermolecular forces of attraction between bromine molecules is stronger than the intermolecular forces of attraction between chlorine molecules.
- 17. The structure of silicon carbide (SiC) can be represented as follows:

Which of the following is most likely to be a physical property of silicon carbide?

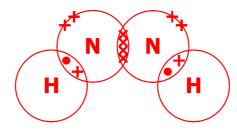
- **A** It has a low melting and boiling point.
- **B** It has a soft, slippery texture.
- **C** It is able to conduct electricity at room temperature.
- **D** It is insoluble in water.
- 18. Three new substances were discovered to have the following physical properties.

Substance	Melting Point	Electrical Conductivity			
Substance	Meiting Point	when solid	when aqueous		
Aktize	71 °C	good	(insoluble)		
Bygnit	2512 °C	poor	good		
Ceevii	216 °C	poor	poor		

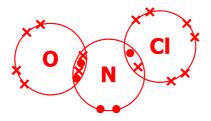
Deduce the structures of the three substances.


	aktize	bygnit	ceevii
Α	metallic lattice	giant molecular	ionic lattice
В	metallic lattice	ionic lattice	simple molecular
С	simple molecular	ionic lattice	giant molecular
D	simple molecular	metallic lattice	ionic lattice

ALEX LEE/2010 PAGE 3 OF 5


- 19. An unknown element **X** was found to be liquid at room temperature, immiscible with water, and able to conduct electricity even when frozen. Which of the following could be **X**?
 - **A** bromine
- **B** calcium
- **C** mercury
- **D** water
- 20. An unknown substance **Y** was found to be solid at room temperature, soluble in water, and unable to conduct electricity under any circumstances. Which of the following could be **Y**?
 - **A** carbon dioxide
- **B** iodine
- **C** lithium chloride
- **D** magnesium

Structured Questions [10 Marks]


- 21. Draw 'dot-and-cross' diagrams, showing only valence electrons, to illustrate the bonding in
 - (a) aluminium oxide [1]

(b) diazene (N_2H_2)

(c) nitrosyl chloride (NOCI) [1]

ALEX LEE/2010 PAGE 4 OF 5

22.	(a)	Describe the structure of a metal. [1]							
		A lattice of positive ions in a 'sea' of delocalised electrons.							
	(b)	Graphite is a non-metal which has a macromolecular structure. However, some of its <i>physical properties</i> resemble that of a metal. State two of these properties. [1]							
		High melting point.							
		Able to conduct electricity in solid state.							
	(c)	Under certain circumstances, both metals and ionic compounds are able to conduct electricity. Describe how the conduction of electricity in a metal differs from that of an ionic compound. [2]							
		A metal can conduct electricity when solid, whereas an ionic compound can only							
		conduct electricity when molten (or aqueous) (1). A metal conducts electricity							
		through the movement of mobile electrons while an ionic compound conducts							
		electricity through the movement of mobile ions (2).							
23.	mel	con and carbon are both in Group IV of the Periodic Table. However, silicon dioxide has a lting point of 1650 °C, while carbon dioxide is gaseous at room temperature. With reference to bonding and structure, account for this difference.							
	Silicon dioxide has a macromolecular structure while carbon dioxide has a simple								
	cov	covalent structure (1). More energy is needed to overcome the strong covalent bonds in							
	silicon dioxide (2) than the weak intermolecular forces in carbon dioxide (3).								

END

ALEX LEE/2010 PAGE 5 OF 5