	Anglo-Chinese Junior JC2 Preliminary Examination Higher 2	College	A Methodist Institution (Founded 1886)
CANDIDATE NAME	Answers	FORM CLASS	2
TUTORIAL CLASS	2CH	INDEX NUMBER	

CHEMISTRY

Paper 3 Free Response

9729/03 27 August 2024 2 hours

Candidates answer on the Question Paper. Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your index number and name on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer **all** questions in the spaces provided on the Question Paper. If additional space is required, you should use the pages at the end of this booklet. The question number must be clearly shown.

Section A

Answer **all** questions.

Section B

Answer **one** question. Circle the number of the question you have attempted.

A Data Booklet is provided.

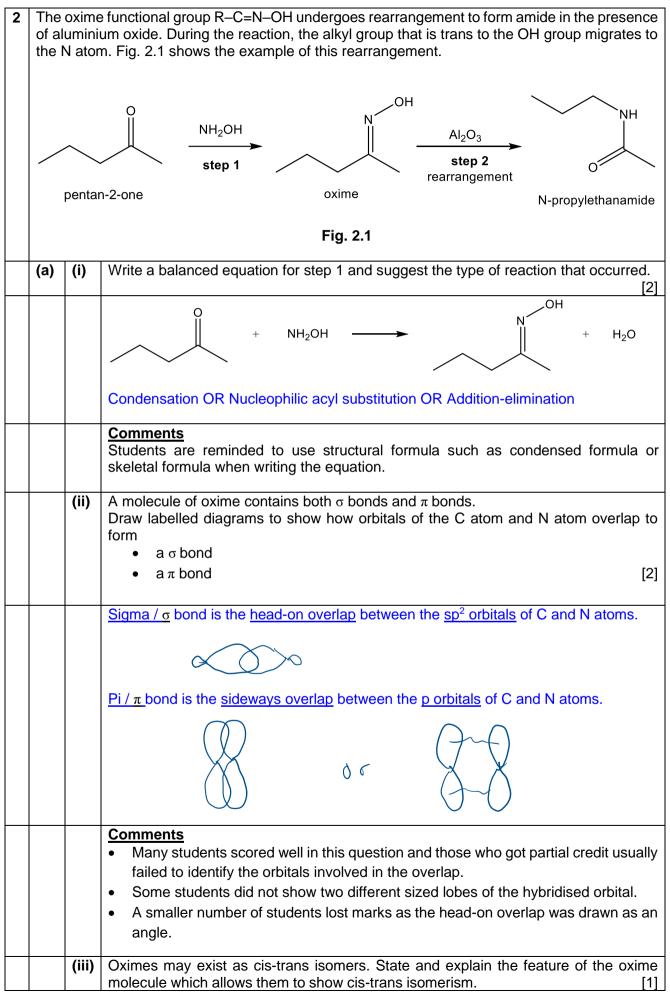
The use of an approved scientific calculator is expected, where appropriate.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiners' use only				
Section	on A			
1	/ 20			
2	/ 20			
3	/ 20			
Section B				
4 / 5	/ 20			
Presentation				
Total	/ 80			

Section A

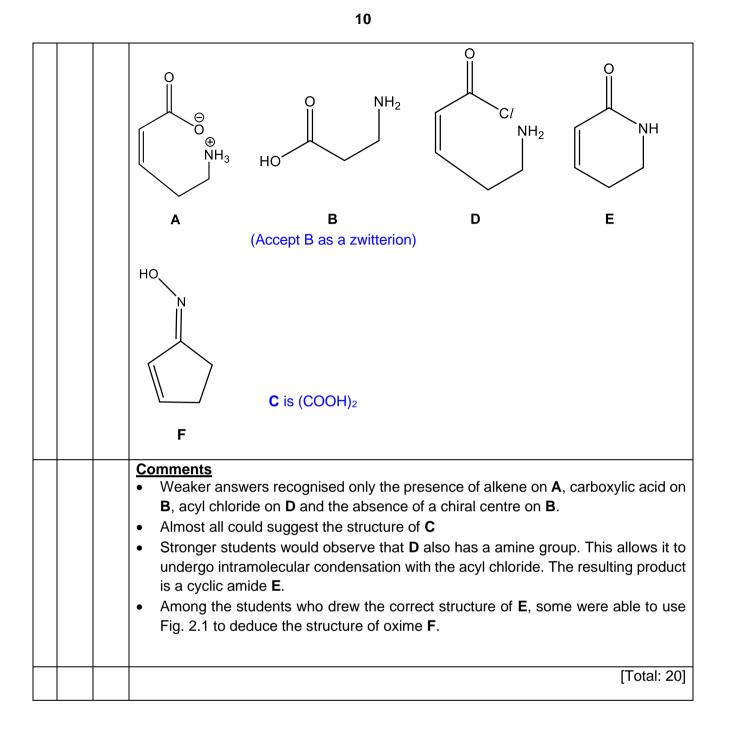
Answer **all** the questions in this section.


1	(a)	Describe the variation in the behaviour of Period 3 chlorides NaCl, AlCl ₃ and PCl ₅ separat with water.		
		Write equations for any reactions described and state the pH of the resultant solutions. [3]		
		NaC <i>I</i> hydrates (dissolves) to give a neutral solution (<u>pH 7</u>). There is no hydrolysis. NaC <i>I</i> (s) + aq \rightarrow Na ⁺ (aq) + C <i>I</i> ⁻ (aq)		
			A/C/ ₃ undergoes substantial hydrolysis due to the high charge density of A/ ³⁺ . The resulting solution is acidic. (<u>pH 3-4</u>) Hydration: <u>A/C/₃(s) + 6H₂O(<i>I</i>) \rightarrow [A/(H₂O)₆]³⁺(aq) + 3C/⁻(aq)</u>	
			Hydrolysis: $[A_{(H_2O)_6}]^{3+}(aq) + H_2O(I) = [A_{(H_2O)_5}(OH)]^{2+}(aq) + H_3O^{+}(aq)$	
			PCI ₅ undergoes complete hydrolysis to give an acidic solution. <u>pH 1-2</u> <u>PCI₅(s) + 4H₂O(I) \rightarrow H₃PO₄ (aq) + 5HCI (aq)</u>	
			 <u>Comments</u> Students should take note of using the reversible for partial hydrolysis and the irreversible arrow for complete hydrolysis. 	
			 Some students were penalised for using the wrong state symbols such as AICI₃(aq) and PCI₅(aq). 	
			 Avoid using the equations that involve limited water as we are unable to give pH of the solid or liquid product: 	
			$AICI_{3}(s) + 3H_{2}O(I) \rightarrow AI(OH)_{3}(s) + 3HCI(g)$	
			$PCI_5(s) + 2H_2O(I) \rightarrow POCI_3(I) + 2HCI(g)$	
	(b)	cont	n soil becomes acidic, aluminium leeches out of minerals into the soil. High aluminium ent in soil affects root growth and causes the roots to be brittle. These problems are mised if the soil pH is maintained above 5.5.	
			study of a soil condition, a sample of soil water was titrated with EDTA, a hexadentate d, to determine its aluminium ion concentration.	
		equation 1 $[A/(H_2O)_6]^{3+}(aq) + [EDTA]^{4-}(aq) \rightleftharpoons [A/(EDTA)]^{-}(aq) + 6H_2O(I)$		
		(i) State the type of reaction in equation 1. [
		Ligand exchange.		
		(ii) The concentration of aluminium ions in the soil water sample was found to be 2.90×10^{-5} mol dm ⁻³ . Calculate the pH of the water sample, given that the aqueous complex of Al ^{β+} has a K_a value of 7.9×10^{-6} .		
			You may assume that the complex of $A^{\beta+}$ behaves as a weak monobasic acid, HA. [1]	
			$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$	
			$7.9 \times 10^{-6} = [H^+]^2 / (2.90 \times 10^{-5})$ [H^+] = 1.514 x 10^{-5}	
			pH = 4.82	

weak acid to determine the pH of the weak acid.(iii)Another 25 cm³ sample of soil water was found to contain 0.250 mol dm⁻³ of NaH ₂ I 20 cm³ of solution A which contains aqueous Na ₂ HPO ₄ was added to the water sar to obtain a solution buffered at pH 6.8. Calculate the concentration of HPO ₄ ²⁻ in solution A, given that the pK ₆ value of H ₂ I is 7.2.Final [H ₂ PO ₄ -] = (0.250 × $\frac{25}{25+20}$) = 0.1389 mol dm³pH = pK ₆ + lg $\frac{[HPO42-1]}{[H2PO4-1]}$ 6.8 = 7.2 + lg $\frac{[HPO42-1]}{[H2PO4-1]}$ 6.8 = 7.2 + lg $\frac{[HPO42-1]}{[H2PO4-1]}$ ig $\frac{[HPO42-2]}{[H2PO4-1]}$ = -0.4 $\frac{[HPO42-2]}{[H2PO4-1]}$ = 0.3981 $\frac{[HPO42-2]}{[H2PO4-1]}$ = 0.3981 $\frac{[HPO42-2]}{[H2PO4-1]}$ ig $\frac{0.3289}{0.3289}$ = 0.3981 the pK for the form of th		
$\frac{1}{20 \text{ cm}^3 \text{ of solution A which contains aqueous Na_2HPO_4 was added to the water sarto obtain a solution buffered at pH 6.8.Calculate the concentration of HPO_42- in solution A, given that the pK6 value of H2fis 7.2.Final [H2PO4-] = (0.250 × \frac{25}{25+20}) = 0.1389 mol dm-3pH = pK6 + lg \frac{ IIPO4^2- }{ IIPO4^2- }6.8 = 7.2 + lg \frac{ IIPO4^2- }{ IIPO4^2- }6.8 = 7.2 + lg \frac{ IIPO4^2- }{ IIPO4^2- }10 \frac{ IIPO4^2- }{ IIPO4^2- } = 0.381\frac{ IIPO4^2- }{ IIPO4^2- } = 0.3981\frac{ IIPO4^2- }{ IIPO4^2- } = 0.3981\frac{ IIPO4^2- }{ IIPO4^2- } = 0.3981\frac{ IIPO4^2- }{10^{-2}} = 0.3981\frac{ IPO4^2- }{10^{-2}} = 5.529 × 10-2 mol dm-3ORK_a = \frac{ IIPO4^2- }{10^{-2}} = 5.529 × 10-2 mol dm-3Amt of HPO_42- in buffer = 5.529 × 10-2 x \frac{25+20}{1000}= 0.002488 mol[HPO42-] in solution A = \frac{0.002488 \text{ mol}}{20 \times 10^{-2}} = 0.124 mol dm-3Comments• Many students were able to use the Henderson-Hesselberg equation (i.e. pHpK4 + lg \frac{ IPO4- }{ IP2O4- }) to relate the pH, pKa and concentrations of the weak acidsalt. They were also able to determine the [H2PO4-] after mixing.• Confusion about the acid and base roles of H2PO4- and HPO42- respectiv0 Failing to recognise that the [HPO42-] from the Henderson-Hesselbergequation is the concentration after mixing, not its original concentration insolution A.• Using the K6 expression to calculate [HPO42-] but failing to recognise that$		Most students were able to use the K_a expression, K_a value and concentration of the
$PH = pK_a + lg \frac{ HP042- }{ H2P04- }$ $6.8 = 7.2 + lg \frac{ HP042- }{ H2P04- }$ $lg \frac{ HP042- }{ H2P04- } = -0.4$ $\frac{ HP042- }{ H2P04- } = -0.3981$ $\frac{ HP042- }{ H2P04- } = 0.3981$ $ HP04^2 _{mal} = 0.3981$ $(HP04^2)_{mal} = 5.529 \times 10^{-2} \text{ mol dm}^{-3}$ OR $K_a = \frac{ HP042- [H^+]}{ H2P04- }$ $10^{-72} = \frac{ HP042- [10^{-6.8}]}{(H2P04-]}$ $10^{-72} = \frac{ HP042- [10^{-6.8}]}{(H2P04-]}$ $10^{-72} = \frac{ HP042- [10^{-6.8}]}{(H2P04-]}$ $(HP04^2)_{mal} = 5.529 \times 10^{-2} \text{ mol dm}^{-3}$ Amt of HP04 ²⁻ in buffer = 5.529 \times 10^{-2} \times \frac{25+20}{1000} $= 0.002488 \text{ mol}$ $(HP04^2)_{mal} = 5.529 \times 10^{-2} \times \frac{25+20}{1000}$ $= 0.002488 \text{ mol}$ $(HP04^2)_{mal} = 5.529 \times 10^{-2} \times \frac{25+20}{1000}$ $= 0.002488 \text{ mol}$ $(HP04^2)_{mal} = 5.529 \times 10^{-2} \times \frac{25+20}{1000}$ $= 0.002488 \text{ mol}$ $(HP04^2)_{mal} = 5.529 \times 10^{-2} \times \frac{25+20}{1000}$ $= 0.002488 \text{ mol}$ $(HP04^2)_{mal} = 5.529 \times 10^{-2} \times \frac{25+20}{1000}$ $= 0.002488 \text{ mol}$ $(HP04^2)_{mal} = 5.529 \times 10^{-2} \times \frac{25+20}{1000}$ $= 0.002488 \text{ mol}$ $(HP04^2)_{mal} = 5.529 \times 10^{-2} \times \frac{25+20}{1000}$ $= 0.002488 \text{ mol}$ $(HP04^2)_{mal} = 5.529 \times 10^{-2} \times \frac{25+20}{1000}$ $= 0.002488 \text{ mol}$ $(HP04^2)_{mal} = 5.529 \times 10^{-2} \times \frac{25+20}{1000}$ $= 0.002488 \text{ mol}$ $(HP04^2)_{mal} = 5.529 \times 10^{-2} \text{ mol dm}^{-3}$ $(HP04^2)_{mal} = 5.529 \times 10^{-2} \times \frac{25+20}{1000}$ $= 0.002488 \text{ mol}$ $(HP04^2)_{mal} = 5.529 \times 10^{-2} \times \frac{25+20}{1000}$ $= 0.002488 \text{ mol}$ $(HP04^2)_{mal} = 5.529 \times 10^{-2} \times \frac{25+20}{1000}$ $= 0.002488 \text{ mol}$ $(HP04^2)_{mal} = 5.529 \times 10^{-2} \text{ mol dm}^{-3}$ $(HP04^2)_{mal} = 5.529 \times 10^{-2} \times \frac{25+20}{1000}$ $= 0.002488 \text{ mol}$ $(HP04^2)_{mal} = 5.529 \times 10^{-2} \times \frac{25+20}{1000}$ $= 0.002488 \text{ mol}$ $(HP04^2)_{mal} = 5.529 \times 10^{-2} \times \frac{25+20}{1000}$ $= 0.002488 \text{ mol}$ $(HP04^2)_{mal} = 5.529 \times 10^{-2} \text{ mol}$ $(HP04^2)_{mal} = 5.5$	(iii)	Calculate the concentration of HPO_4^{2-} in solution A , given that the pK _a value of $H_2PO_4^{-}$
$\begin{bmatrix} Ig \frac{IH2}{ H2PO4-]} = -0.4 \\ \frac{[HPO42-]}{ H2PO4-]} = 0.3981 \\ \frac{[HPO42-]}{[H2PO4-]} = 0.3981 \\ \frac{[HPO42^-]_{mal}}{0.1389} = 5.529 \times 10^{-2} \text{ mol dm}^{-3} \\ OR \\ K_a = \frac{[HPO42-]_{[H12}}{[H2PO4-]} \\ 10^{-7.2} = \frac{[HPO42-]_{[10^{-6.8}]}}{[H2PO4-]} \\ 10^{-7.2} = \frac{[HPO42^-]_{10^{-6.8}]}}{[HPO4^2^-]_{mal}} = 5.529 \times 10^{-2} \text{ mol dm}^{-3} \\ Amt of HPO4^{-2} - in buffer = 5.529 \times 10^{-2} \times \frac{25+20}{1000} \\ = 0.002488 \text{ mol} \\ [HPO4^{-2}]_{inal} = 5.529 \times 10^{-2} \text{ mol dm}^{-3} \\ Mmt of HPO4^{-2} - in buffer = 5.529 \times 10^{-2} \times \frac{25+20}{1000} \\ = 0.002488 \text{ mol} \\ [HPO4^{-2}] \text{ in solution } A = \frac{0.002488 \text{ mol}}{20 \times 10^{-3}} = 0.124 \text{ mol dm}^{-3} \\ \hline Comments \\ \bullet \text{ Many students were able to use the Henderson-Hesselberg equation (i.e. pH pK_a + Ig \frac{[HPO42-]}{[H2PO4-]}) \text{ to relate the pH, pKa and concentrations of the weak acid salt. They were also able to determine the [H_2PO_4^-] after mixing. \\ \bullet \text{ Confusion about the acid and base roles of H_2PO_4^- and HPO_4^{-2} - respectiv \\ \circ \text{ Failing to recognise that the [HPO_4^{-2}] from the Henderson-Hesselberg equation is the concentration after mixing, not its original concentration in solution A. \\ \circ \text{ Using the } K_a \text{ expression to calculate [HPO_4^{-2}] but failing to recognise that the [H2O_4^{-2}] but failing to recognise that the [H2O_4^{-2}] hut $		Final $[H_2PO_4^-] = (0.250 \times \frac{25}{25+20}) = 0.1389 \text{ mol dm}^{-3}$
$K_{a} = \frac{[\text{HPO4}2-][\text{H}+]}{[\text{H2PO4}-]}$ $10^{-7.2} = \frac{[\text{HPO4}2-][\text{10}^{-6.8}]}{[\text{H2PO4}^{-2}]}$ $10^{-7.2} = \frac{[\text{HPO4}2-][\text{10}^{-6.8}]}{[\text{H2PO4}^{-2}]}$ $10^{-7.2} = \frac{[\text{HPO4}2-][\text{10}^{-6.8}]}{0.1389}$ $[\text{HPO4}^{2-}]_{\text{inal}} = 5.529 \times 10^{-2} \text{ mol dm}^{-3}$ Amt of HPO4 ²⁻ in buffer = 5.529 × 10 ⁻² × $\frac{25+20}{1000}$ $= 0.002488 \text{ mol}$ $[\text{HPO4}^{2-}] \text{ in solution A} = \frac{0.002488 \text{ mol}}{20 \times 10^{-3}} = 0.124 \text{ mol dm}^{-3}$ Comments • Many students were able to use the Henderson-Hesselberg equation (i.e. pH $pK_{a} + \lg \frac{[\text{HPO4}2^{-}]}{[\text{H2PO4}^{-}]}$) to relate the pH, pKa and concentrations of the weak acid salt. They were also able to determine the $[\text{H}_2\text{PO4}^{-}]$ after mixing. • Common mistakes include: • Confusion about the acid and base roles of H ₂ PO ₄ ⁻ and HPO ₄ ²⁻ respective Failing to recognise that the $[\text{HPO4}^{2^{-}}]$ from the Henderson-Hesselberg equation in solution A. • Using the K_{a} expression to calculate $[\text{HPO4}^{2^{-}}]$ but failing to recognise that		$lg \frac{[HP042-]}{[H2P04-]} = -0.4$ $\frac{[HP042-]}{[H2P04-]} = 0.3981$ $\frac{[HP042-]}{0.1389} = 0.3981$
 Amt of HPO₄²⁻ in buffer = 5.529 × 10⁻² × ²⁵⁺²⁰/₁₀₀₀ = 0.002488 mol [HPO₄²⁻] in solution A = ^{0.002488 mol}/_{20 × 10⁻³} = <u>0.124 mol dm⁻³</u> Comments Many students were able to use the Henderson-Hesselberg equation (i.e. pH pK_a + lg ^[HPO4 2-]/_[H2PO4-]) to relate the pH, pKa and concentrations of the weak acid salt. They were also able to determine the [H₂PO₄⁻] after mixing. Common mistakes include: Confusion about the acid and base roles of H₂PO₄⁻ and HPO₄²⁻ respective of Failing to recognise that the [HPO₄²⁻] from the Henderson-Hesselberg equation is the concentration after mixing, not its original concentration in solution A. Using the K_a expression to calculate [HPO₄²⁻] but failing to recognise that 		OR
 = 0.002488 mol [HPO₄²⁻] in solution A = 0.002488 mol/20 x 10⁻³ = 0.124 mol dm⁻³ Comments Many students were able to use the Henderson-Hesselberg equation (i.e. pH pK_a + lg [HPO₄2-]/[H2PO₄-]) to relate the pH, pKa and concentrations of the weak acid salt. They were also able to determine the [H₂PO₄-] after mixing. Common mistakes include: Confusion about the acid and base roles of H₂PO₄- and HPO₄²⁻ respectiv Failing to recognise that the [HPO₄²⁻] from the Henderson-Hesselberg equation is the concentration after mixing, not its original concentration in solution A. Using the K_a expression to calculate [HPO₄²⁻] but failing to recognise that 		$\begin{split} \mathcal{K}_{a} &= \frac{[\text{HPO4 } 2-][\text{H}+]}{[\text{H2PO4}-]} \\ 10^{-7.2} &= \frac{[\text{HPO4 } 2-][10^{-6.8}]}{[\text{H2PO4}-]} \\ 10^{-7.2} &= \frac{[\text{HPO4 } 2-][10^{-6.8}]}{0.1389} \\ [\text{HPO4}^{2-}]_{\text{final}} &= 5.529 \times 10^{-2} \text{ mol dm}^{-3} \end{split}$
 Comments Many students were able to use the Henderson-Hesselberg equation (i.e. pH pK_a + lg [HP04 2-]/[H2P04-]) to relate the pH, pKa and concentrations of the weak acid salt. They were also able to determine the [H₂PO₄⁻] after mixing. Common mistakes include: Confusion about the acid and base roles of H₂PO₄⁻ and HPO₄²⁻ respective Failing to recognise that the [HPO₄²⁻] from the Henderson-Hesselberg equation is the concentration after mixing, not its original concentration in solution A. Using the K_a expression to calculate [HPO₄²⁻] but failing to recognise that 		1000
 Many students were able to use the Henderson-Hesselberg equation (i.e. pH pK_a + lg [HPO4 2-] [H2PO4-]) to relate the pH, pKa and concentrations of the weak acid salt. They were also able to determine the [H₂PO₄-] after mixing. Common mistakes include: Confusion about the acid and base roles of H₂PO₄- and HPO₄²⁻ respectiv Failing to recognise that the [HPO₄²⁻] from the Henderson-Hesselberg equation is the concentration after mixing, not its original concentration in solution A. Using the K_a expression to calculate [HPO₄²⁻] but failing to recognise that 		[HPO ₄ ^{2–}] in solution A = $\frac{0.002488 \text{ mol}}{20 \times 10^{-3}}$ = $0.124 \text{ mol dm}^{-3}$
		 Many students were able to use the Henderson-Hesselberg equation (i.e. pH = pK_a + lg [HP04 2-]/[H2P04-]) to relate the pH, pKa and concentrations of the weak acid and salt. They were also able to determine the [H₂PO₄⁻] after mixing. Common mistakes include: Confusion about the acid and base roles of H₂PO₄⁻ and HPO₄²⁻ respectively. Failing to recognise that the [HPO₄²⁻] from the Henderson-Hesselberg equation is the concentration after mixing, not its original concentration in solution A. Using the K_a expression to calculate [HPO₄²⁻] but failing to recognise that for
(c) The reactions of ethylbenzene to form H , J and K are shown in Fig.1.1.	(c) The	reactions of ethylbenzene to form H , J and K are shown in Fig.1.1.

	$ \begin{array}{c} \begin{array}{c} & & & \\ & &$
	Fig. 1.1
(i)	Suggest the reagents and conditions needed for reactions I and II and suggest the structure of M in Fig. 1.1. [3]
	I: KMnO ₄ , H ₂ SO ₄ (aq), heat under reflux
	II: SOCI ₂ OR PCI ₅ OR PCI ₃ , heat CO_2H M:
	<u>Comments</u>
	 Reaction I is a side-chain oxidation of alkylbenzene. It results in benzoic acid M. More students were able to state the correct reagents and conditions to convert M into an acid chloride. However, wrong state symbols such as PCI₅(aq) or SOCI₂(aq) would lose this mark.
(ii)	Describe and explain the relative ease of hydrolysis of H , J and K . [3]
	Relative ease of hydrolysis: K > H > J
	Due to the presence of the <u>electronegative O and Cl atoms</u> on the acyl chloride in compound K , its carbonyl carbon is <u>more electron deficient</u> than that in H and more susceptible to attack by the nucleophile. Therefore the hydrolysis of K has greater ease than that of H . In aryl chloride J , the <u>p orbital of C/ overlaps with the π electron cloud of the benzene ring</u> . As a result the C-Cl bond has <u>partial double bond</u> character which require more energy to break. This makes causes J to have the lowest ease of hydrolysis.
	ring. As a result the C-CI bond has <u>partial double bond</u> character which require m energy to break. This makes causes J to have the lowest ease of hydrolysis.

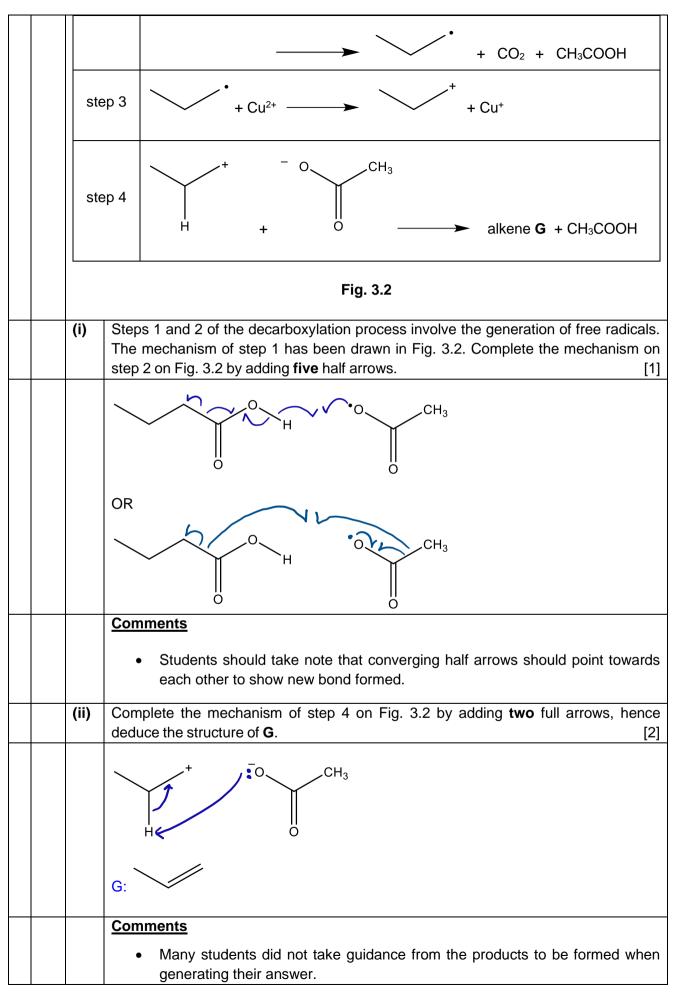
		Comments
		 Common misconceptions include: Confusing the effect of C=O group in -COCI with that for the base strength of - CONH Calling the C=O group electron withdrawing without identifying that the cause is the electronegative O atom. Thinking that the phenyl group contributes to delocalisation of electron pair from CI atom.
(d)	it has expe	whene is a nanomaterial comprising of a single layer of graphite. Compared with copper, is higher tensile strength and similar electrical conductivity while having lower mass. An eriment was conducted to electroplate copper onto graphene. The experiment, a copper anode and graphene cathode was immersed in aqueous ber(II) sulfate as the electrolyte.
	(i)	Describe the observations at the cathode and the electrolyte after some time. [1]
		 The cathode would <u>increase in size / mass</u> OR show a <u>pink brown colour</u> of copper metal. The <u>electrolyte remains the same / remains blue</u>.
		<u>Comments</u> Common mistake include stating that copper is deposited or concentration of CuSO ₄ remains the same. Students should state the observation changes instead.
	(ii)	 The graphene at the cathode is a square with a length of 0.1 m. Assume that each copper occupies a cube length of 3.0 × 10⁻¹² m, the graphene has no thickness and there is uniform plating of copper. Calculate the amount of Cu atoms to cover both sides of the graphene with a depth of 500 atoms the time required to achieve this using a current of 5.0 A.
		Number of Cu atoms for a depth of 1 atom for both sides = $2 \times [0.1^2 \div (3.0 \times 10^{-12})^2] = 2.222 \times 10^{21}$ atoms Number of Cu atoms for a depth of 500 atoms for both sides = $2.222 \times 10^{21} \times 500 = 1.111 \times 10^{24}$ atoms Amount of Cu to electroplate both sides with a depth of 500 atoms = $1.111 \times 10^{24} \div (6.02 \times 10^{23}) = 1.846$ mol n(e) = $1.846 \times 2 = 3.692$ mol Q = n(e).F = $3.692 \times 96500 = 356278$ C t = $356278 \div 5.0$ = 71255.6 = 71300 s (OR 1190 min OR 19.8 h)


	 Comments Many students had difficulty calculating the correct number of Cu atoms and the amount of Cu deposited. This was usually because they neglect to find the Cu deposited on 2 sides of the sheet. Some students also forgot to convert the number of Cu atoms into the number of mol of Cu. However, students were able to apply Q = n(e).F and Q = It correctly.
(iii	 The student replicated this experiment to electroplate graphene with A<i>l</i>. He replaced aqueous CuSO₄ with aqueous A<i>l</i>(NO₃)₃ and the copper plate with an aluminium plate. Using <i>E</i>[®] values from the <i>Data Booklet</i>, suggest if this experiment will be successful. [2]
	The experiment will not be successful. Al will not be plated at the cathode. Instead, <u>water</u> is <u>preferentially reduced /</u> <u>discharged</u> at the cathode as $\underline{E^{e}(H_2O/H_2)}$ is less negative than $\underline{E^{e}(Al^{3+}/Al)}$. Cathode: $H_2O + 2e \rightarrow H_2 + 2OH^- E^{e}(H_2O/H_2) = -0.83V$ OR
	Al will not oxidized from the anode. Instead, <u>oxidation of water to form O₂ occurs</u> OR $\frac{2H_2O(I) \rightarrow O_2(g) + 4H^+(aq) + 4e^-}{AI \text{ to form } Al_2O_3}.$ Anode: $2H_2O(I) \rightarrow O_2(g) + 4H^+(aq) + 4e^- E^{\oplus}(H_2O/O_2) = +1.23V$
	 Comments Students who answered well in this question were able to compare <i>E</i>[®] values and apply them to the preferential discharge at the cathode. Students who stated that aluminium would oxidise that the anode did not recognise that there is a layer of Al₂O₃ on the surface of the metal. Similar to the anodising of aluminium, the oxide layer prevents the direct oxidation of Al.
	[Total: 20]

7

	Restricted rotation about the <u>C=N bond</u> OR <u>C–N double bond</u> .					
	Comments Most students were able to get the correct answer.					
(iv) Suggest a simple chemical test to distinguish pentan-2-one a N-propylethanamide shown in Fig. 2.1.			one and [2]			
	Test: NaOH(aq), heat Observation: The amide releases a gas that turns moist red litmus paper blue, but pentan-2-one does not form a gas that turns moist red litmus blue. OR Test: aqueous I ₂ , NaOH, heat Observation: Pentan-2-one give yellow ppt but amide does not.					
	OR Test: <u>2, 4-dinitrophenylhydrazine</u> Observation: <u>Pentan-2-one give orange/yellow ppt</u> but <u>amide does not form any</u> <u>orange or yellow ppt</u> .					
	 Comments Students are reminded that the differentiation should be carried out using only 1 chemical test. The test that is chosen must also have different observable changes. The observation for both compounds must be stated. 			ing only 1		
(b)	The	p <i>K</i> ₀ va	alues of three nitrogen o	containing compounds are given i Table 2.1	in Table 2.1.	
			name	structure	p <i>K</i> ₀	
	phenylamine NH ₂ 9.4					
			ethylamine	CH ₃ CH ₂ NH ₂	3.4	
			N-propylethanamide	N H H	14.4	
	Rank the compounds in order of increasing basicity and explain your reasoning. [3]				[3]	
	Increasing basicity: $H < CH_3CH_2NH_2$					
	Phenylamine and amide are less basic than $CH_3CH_2NH_2$ as the <u>p orbitals of NH_2 overlap</u> with the pi electron cloud of benzene OR C=O groups.				H ₂ overlap	
	into t	he C=		lone pair on N of the amide is mor zene ring of phenylamine thus the		
	Thus to H ¹		one pair on N is delocali	ised into the benzene ring and les	ss available fo	or donation
			0700/0	reliminary Examination/2024		Furn over

		<u>CH_2NH_2 has an electron donating alkyl group</u> so the lone pair on N is more available onation to H ⁺ .
	• • • • • • • •	
(c)	com gas Com neut	terion A $C_5H_9NO_2$ reacts with hot acidified potassium manganate(VII) to form pound B $C_3H_7NO_2$ and compound C , $C_2H_2O_4$. Compound C further oxidises to form a that forms white precipitate in limewater. B does not rotate plane polarised light. pound A also reacts with SOC l_2 to form D C_5H_8NOCl which further reacts to form a ral compound E C_5H_7NO . also formed when the oxime F C_5H_7NO reacts in the presence of aluminium oxide.
	(i)	Describe the formation of a <i>zwitterion</i> . [1]
		The carboxylic acid and the amine functional groups undergo ionisation to form a $\underline{-}$ <u>COO⁻ group and a -NH₃⁺ group on the same molecule / compound</u> .
		$\frac{\text{Comments}}{\text{Many students recognised that presence of -COOH and -NH}_2 exchanging proton to forms 2 oppositely charged groups, but did not state that the two groups are on the same molecule.}$
	(ii)	Suggest possible structures for A , B , C , D , E and F . For each reaction, state the type of reaction described and explain what the information tells you about the functional groups present in each compound. [9]
		A undergoes oxidative cleavage / oxidation of an alkene functional group.
		A has <u>2 degrees of unsaturation</u> .
		B <u>does not have a chiral centre</u> / has <u>internal plane of symmetry</u> as it does not rotate plane polarised light.
		$\frac{Carboxylic\ acid}{in\ compound\ \textbf{A}}\ also\ undergoes\ \underline{substitution}\ /\ \underline{nucleophilic\ substitution}\ with\ SOCI_2\ to\ form\ an\ acyl\ chloride.$
		The <u>acyl chloride</u> in compound D undergoes <u>intramolecular condensation</u> with the amine functional group to form amide E .
		E is a <u>cyclic amide</u> as it forms from the rearrangement of oxime F . or F is a <u>cyclic</u> structure.


3	(a)	(i)	Using relevant E^{Θ} values from the <i>Data Booklet</i> , describe the trend in reactivity of Group 2 metals as reducing agents. [2]	
			Down the group:	
			$Mg^{2+} + 2e^{-} \rightleftharpoons Mg \qquad E^{\Theta} = -2.38 V$	
			$Ca^{2+} + 2e^{-} \Rightarrow Ca \qquad E^{\Theta} = -2.87 V$	
			Ba ²⁺ + 2e ⁻ \Rightarrow Ba E ^Θ = −2.90 V (do not need to quote the values)	
			The relative reactivity of Group 2 metals as reducing agents increases down the group OR stronger / better reducing agent OR 'more reactive' from Mg to Ca to Ba.	
			This is shown by the reduction potential/ E^{Θ} value of Group 2 cations <u>becoming more</u> <u>negative</u> / less positive down the group.	
			Hence the tendency of Group 2 metals to get oxidised increases down the group/tendency of Group 2 metals to lose electrons increases down the group.	
			Comments	
			 While question did not ask to quote values from Data Booklet, students should note that trend can only be seen with more than 3 pieces of data. To only mention 2 metals is merely a comparison. Phrases like 'down the group' should be used in the responses. 	
			 A handful of responses gave contradictory conclusions. 	
		(ii)	Using the <i>Data Booklet</i> or otherwise, explain another property of Group 2 metals that supports this trend. [2]	
			Down the group, the <u>valence electrons are further from the nucleus / larger atomic</u> <u>radius</u> (Not accepted: ionic radius)	
			OR the sum of the first and second <u>ionisation energies decrease down the group</u> , and experiences weaker nuclear attraction.	
			The tendency of Group 2 metals to lose the 2 electrons increases down the group	
			OR less energy required / it is easier to lose electrons.	
			Comments	
			 Quite a number of students were able to identify the correct property. However for IE, students should contextualise the question to Group 2 metals, hence it should be highlighted that it is the sum of the first and second IE that should be looked at to determine the trend. Incorrect responses included description of trend of nuclear charge, shielding effect and effective nuclear charge. 	
	(b)	mate rate.	ermogram from the TGA of calcium carbonate and magnesium carbonate is shown in	

	$S_{\text{MgCO}_3}^{\text{MgCO}_3} \xrightarrow{\text{CaCO}_3}_{\text{MgCO}_3} \xrightarrow{\text{MgCO}_3}_{\text{MgCO}_3} \xrightarrow{\text{MgCO}_3}_{\text{MgCO}_3}} \xrightarrow{\text{MgCO}_3}_{\text{MgCO}_3} \xrightarrow{\text{MgCO}_3}_{M$	
	Fig. 3.1	
(i)	For both samples, the thermogram shows significant loss in mass when the temperature is high enough. Write an equation for the heating of calcium carbonate at about 800°C. [1] $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$ Not accepted: reversible arrow	
	 <u>Comments</u> Generally well done. Some students wrote an equation representing combustion instead. 	
(ii)	 With reference to the equation in (b)(i), explain the differences between the thermogram of calcium carbonate and magnesium carbonate in terms of the temperature when the carbonate starts to have significant decrease in mass the final mass of product obtained, given that the same initial mass is used for both carbonates. [4] 	
	Magnesium carbonate has a smaller ionic radius of Mg ²⁺ than Ca ²⁺ , giving rise to a <u>larger charge density and</u> OR <u>larger polarising power</u> of Mg ²⁺ ,	
	allowing it to <u>polarise/distort electron cloud of carbonate</u> OR <u>weaken</u> the C-O <u>bond</u> within carbonate anion <u>to a larger extent</u> . (Not accepted: ionic or intermolecular bond) <u>Less energy</u> is needed to break the weaker covalent bonds within carbonate anion of	
	MgCO ₃ , hence MgCO ₃ starts to decompose at a lower temperature. Magnesium has a smaller atomic mass than calcium, hence the <u>amount of MgCO₃</u>	
	used is larger.	
	The <u>amount / mass of CO₂ lost</u> from MgCO ₃ is <u>larger</u> , hence the mass of product left is smaller than that of CaCO ₃ .	
	Comments	
	• The first part of the question was generally well done. A number of responses were careless in their phrasings, eg. polarise the carbonate anion, weaken the carbonate bond.	
	9720/Preliminary Examination/2024	

12

		$q = (C_p + mc) \Delta T$ Together with the information in Table 3.1, calculated				
	(ii)	The heat released, q , can be found using the following				
		specific heat capacity of water, $c / J g^{-1} K^{-1}$	4.18			
		heat capacity of calorimeter, C_p / J K ⁻¹	191			
		temperature of water before ignition / °C temperature of water after ignition / °C	28.6 56.0			
		mass of water / g	150			
		mass of calcium / g	1.41			
		Table 3.1	4 44			
	Som	e data is recorded in Table 3.1.				
	filled	with high pressure of excess oxygen. The sample is the ge in the surrounding water is recorded.				
		mb calorimeter consists of a thermally-insulated sealed r. A sample of calcium is placed into the metal containe				
		pressure of standard conditions.				
		 This question was poorly answered. Wrong answers 'energy change', '273K' or did not state the temperature and 				
		Comments				
(Not accepted: energy required / absorbed, stand			onaitions)			
		oxygen at 298 K and 1 bar.	anditional			
		It is the <u>energy evolved</u> when <u>one mole</u> of substance is	s <u>burned completely</u> in <u>excess</u>			
(c)	(i)	Explain what is meant by the term standard enthalpy change of combustion.[1]				
		 This question was poorly attempted. Most of a similar answers to the first part of (b)(ii). 	the incorrect responses gave			
		Comments				
		Therefore, the melting point of MgCO ₃ is greater OR temperature in the smaller.	the melting point of CaCO ₃ is			
		exothermic or higher LE between Mg ²⁺ and CO ₃ ²⁻ than				
		Since LE $\alpha \left \frac{q_+q}{r_++r} \right $, more energy is required to overcome				
		The charges of Mg ²⁺ and Ca ²⁺ are the same, and the ior that of Mg ²⁺ .				
		of attraction/ionic bonds between the oppositely charge $T_{\rm b}$ a charge of Ma ² t and Ca ² t are the same and the ion				
		CaCO ₃ and MgCO ₃ have giant ionic lattice structures a				
	(iii)	Explain the difference in melting points of calcium carbonate in terms of structure and bonding.	carbonate and magnesium			
		 Mg has a smaller A_r than Ca, students were us final mass of CaO is higher than MgO. Many incorrect responses also misinterpreted the differences instead of explain. 				
		Mid has a smaller A, than Ca, students were u	naple to properiv explain why			

		$q = (191 + (150 \times 4.18)) (56.0 - 28.6)$
		= 22413 J
		Amount of calcium ignited = 1.41 / 40.1
		= 0.0352 mol
		$\Delta H_{\text{combustion}} = -22413/0.0352$
		$=-637419 \text{ J mol}^{-1}$
		$= -637 \text{ kJ mol}^{-1}$
		Comments
		• Generally well done. Most common mistake was forgetting to include the negative sign for <i>△H</i> .
	(iii)	The experiment was repeated with 1 bar pressure of oxygen gas. The value of the enthalpy change of combustion obtained was smaller than that in (c)(ii).
		Suggest a reason for the discrepancy.[1]
		The lower pressure of O_2 in the bomb calorimeter may have resulted in <u>incomplete</u> <u>combustion</u> OR <u>Ca is not fully reacted</u> of calcium, hence less heat is evolved, resulting in less exothermic enthalpy change of combustion calculated.
		Comments
		This question was generally well done. Incorrect responses focused on rate of reaction.
(d)	steps The o R– The lead	decarboxylation of carboxylic acids to obtain alkenes can be achieved in a series of s. overall balanced equation of the reaction process is shown as follows. $COOH + Pb(O_2CCH_3)_4 \xrightarrow{Cu(O_2CCH_3)_2}$ alkene + $CO_2 + 2CH_3COOH + Pb(O_2CCH_3)_2$ process of decarboxylation of butanoic acid, $CH_3CH_2CH_2COOH$, with tetraethanoate, $Pb(O_2CCH_3)_4$ in the presence of catalytic amounts of $Cu(O_2CCH_3)_2$ is n in Fig. 3.2.
	ste	p 1 $\begin{array}{c c} 0 & 0 \\ H_3CC & 0 & CCH_3 \\ 0 & 0 & CCH_3 \end{array} \longrightarrow 2 \begin{array}{c} 0 & CH_3 \\ + Pb(O_2CCH_3)_2 \\ 0 & 0 & CCH_3 \end{array}$
	ste	p 2 P

		A number of responses formed 2-methylpropene for alkene G.	
	(iii)	Name the <i>types of reaction</i> for steps 3 and 4. [2	2]
		Step 3: redox (Not accepted: [O]) Step 4: acid-base	
		 <u>Comment</u> Elimination is the overall reaction, not step 4. 	
		[Total: 20)]

Section B

17

Answer **one** question from this section.

4	(a)		zinc-air battery involves a porous zinc electrode that reacts to form zincate,
		Zn(C	$DH)_4^{2^-}$. Zn(OH)_4^{2^-}(aq) + 2e^- \Rightarrow Zn(s) + 4OH ⁻ (aq) $E^{\theta} = -1.25 \text{ V}$
		The	other electrode in the battery is the oxygen electrode in an alkaline medium.
		(i)	Draw a fully labelled diagram of the experimental set-up used to measure this $E^{e_{cell}}$
			and indicate the direction of electron flow. [3]
			Correct answers should include: • Correct electron flow (Zn to Pt) • O ₂ (a) at $T = 298 \text{ K}$ $[OH^{-1}] = 1 \mod \text{dm}^{-3}$ T = 298 K $[OH^{-1}] = 1 \mod \text{dm}^{-3}$ T = 298 K T = 298 K $[OH^{-1}] = 1 \mod \text{dm}^{-3}$ T = 298 K T = 298 K $[OH^{-1}] = 1 \mod \text{dm}^{-3}$ T = 298 K T = 298 K $[OH^{-1}] = 1 \mod \text{dm}^{-3}$ T = 298 K T = 298 K $T = 298 \text$
			 [Zn(OH)₄]²⁻ = 1 mol dm⁻³ at anode [OH⁻] = 1 mol dm⁻³ at anode
			Comments
			 This is a galvanic cell. Some students wrongly drew an electrolytic cell instead. Some students did not know how to draw the half-cell for oxygen electrode in alkaline medium. The correct half-equation can be taken from Data Booklet. A large number of students were unable to fully show standard conditions on their diagram (T=298K, concentration of any aqueous species at 1 mol dm⁻³, Pt electrode if electrode not specified, pressure of any gas at 1 bar).
		(ii)	Calculate the standard Gibbs free energy change, ΔG^{e} , for the oxidation of one mole of zinc in the zinc-air battery. [2]
			$E_{cell}^{\theta} = +0.40 - (-1.25) = +1.65 V$
			$\Delta G^{\theta} = -(2)(96500)(+1.65)$
			$= -3.18 \times 10^5 Jmol^{-1}$
			$= -318 k Jmol^{-1}$
			Comments
L			

		A significant number of students incorrectly used n=4. The question has already specified that this is for the oxidation of one mole of zinc, which involves 2 moles of electrons.
	(iii)	Predict how the E_{cell} will change when water is added into the $Zn(OH)_4^2$ /Zn half-cell. [2]
		Addition of water/dilution decreases the total number of particles per unit volume. <u>Position of equilibrium shifts right</u> for $Zn(OH)_4^{2-}(aq) + 2e^- \Rightarrow Zn(s) + 4OH^-(aq)/$ tendency for reduction of $[Zn(OH)_4]^{2-}$ decreases
		as there are more aqueous products than reactants/more ions on RHS.
		E(Zn(OH) ₄ ²⁻ /Zn) will become more positive/less negative./E _{anode} increase
		E _{cell} will become <u>less positive/decrease</u> .
		Comments
		Poorly done. This explanation is analogous to the decrease in total pressure exerted by gases when volume increases. POE will shift to favour the side which has more gaseous particles to increase pressure.
	(iv)	The zinc-air battery can be recharged and is relatively cheaper to produce.Suggest one other advantage of using the zinc-air battery.[1]
		Advantage: Zinc-air fuel cells have high energy densities.
		Alternative answers:
		Less flammable/Less explosive/Does not produce greenhouse gases/portable
		(Not accepted: does not produce harmful / polluting / toxic gases, more environmentally friendly to dispose)
		Comments
		A significant number of students provided vague responses which were not accepted.
(b)	(i)	In the Contact Process, vanadium oxide catalyses the formation of sulfur trioxide, which is eventually converted to sulfuric acid through further reactions.
		$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$
		State the type of catalyst in this reaction and describe how vanadium oxide speeds up this gaseous reaction. [3]
		Heterogeneous catalyst.
		As the gaseous reactants diffuse toward the solid catalyst surface, they are adsorbed/form bonds with the active sites or the catalyst/donate electrons to vacant orbitals of catalyst on the active sites on the catalyst surface via van der Waal's forces. The surface concentration of SO ₂ and O ₂ increases.
		This <u>weakens</u> the intramolecular covalent <u>bonds</u> in the reactant molecules. Adjacent reactants can then react to form products at a <u>lower activation energy</u> , which leads to increased rate.
		The <u>products desorb/diffuse away/dissociate</u> from the catalyst surface and diffuse away, thus allowing the vacant active sites to be available for adsorption of other reactant molecules.

	(ii)	In aqueous solution, vanadium ions form complexes of which the colours are lilac $[V(H_2O)_6]^{2+}$, green $[V(H_2O)_6]^{3+}$ and blue $[VO(H_2O)_5]^{2+}$.
		Explain why vanadium ions are often coloured in aqueous solutions. [3]
		In the presence of water ligands, the 3 <u>d orbitals of vanadium are split</u> into two sets of slightly different energy levels.
		Vanadium ions has partially filled 3d orbitals.
		(Not accepted: empty or vacant)
		An electron from the lower 3d energy level can absorb a specific frequency of light from the visible spectrum and be promoted/excited to a higher energy level
		The colour observed is complementary to the colour of light absorbed.
		OR wavelengths of light not absorbed/reflected are observed.
(c)		e nitration of benzene, sulfuric acid and nitric acid are used to generate the highly
		tive nitronium ion. 4.1 shows the incomplete mechanism for the formation of the nitronium ion.
	ı ıy.	$\frac{9}{2}$
		H H H H H H H H H H
		H H H H H H H H H H
		step 3 H ₂ O + H ₂ SO ₄ \longrightarrow H ₃ O ⁺ + HSO ₄ ⁻
	(i)	Fig. 4.1
	(i)	On Fig. 4.1, draw curly arrows, partial charges and insert relevant lone pairs in steps 1 and 2 to complete the mechanism for the formation of the nitronium ion. [2]
	(ii)	State the role of sulfuric acid in step 1. [1]
		Brønsted-Lowry acid / Bronsted acid / proton donor
		(Not accepted: catalyst or acid or Lewis acid)
(d)	(i)	Benzene can also undergo electrophilic substitution with sulfur trioxide in the presence of fuming sulfuric acid.

	$ \begin{array}{ c c c c } \hline & & & & & \\ \hline & & & & \\ \hline \\ \hline$
	Explain why sulfur trioxide can act as an electrophile.[1]Sulfur is bonded to three highly electronegative oxygen atoms, making sulfur electron
	<u>deficient</u> OR <u>partial positive charge.</u>
	Comments
	Students who did not score in this question usually did not explain why S is electron deficient.
(ii)	Suggest a mechanism for the reaction between benzene and sulfur trioxide. Show the displayed structure of the electrophile, the structure of the intermediate and the movement of electron pairs by using curly arrows. [2]
	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & $
	Alternative answer: $SO_3 + H_2 S_2O_7 \longrightarrow O = S - 0 - H + I + S_2O_7$ $\downarrow P = 0 \qquad H \qquad SO_3H$ $\downarrow O = S - 0 - H + I + S_2O_7$ $\downarrow H = 0 \qquad H \qquad SO_3H$ $\downarrow O = H \qquad H = SO_3H$
	$\begin{array}{c} H \\ H \\ H \\ S \\$
	[Total: 20]

5			" reaction is industrially important in making aldehydes and ketones from alkenes. For propanal can be synthesised from ethene, C_2H_4 , as shown in the following equation.
	exai	npie, j	$CH_2=CH_2(g) + CO(g) + H_2(g) \Rightarrow CH_3CH_2CHO(g)$ $\Delta H < 0$
	(a)	An e	quimolar mixture of C_2H_4 , CO and H_2 is added to a sealed vessel and heated to 500 K
			e presence of rhodium catalyst. At equilibrium, 99% of C_2H_4 has reacted. The total sure in the vessel is 40.8 atm at equilibrium.
		(i)	Write the expression for the equilibrium constant, K_p , for this reaction. Use your expression to calculate the value of K_p for this reaction. Include its units. [4]
			$K_{\rm p} = \frac{P_{CH_3CH_2CHO}}{P_{CH_2=CH_2}P_{CO}P_{H_2}}$
			$\begin{array}{ c c c c c c c }\hline C_2H_4 & + & CO & + & H_2 & \rightleftharpoons & CH_3CH_2CHO \\ \hline \end{array}$
			Initial/atm x x x 0
			Change/atm -0.99x -0.99x -0.99x +0.99x Final/atm 0.01x 0.01x 0.01x 0.99x
			0.01x + 0.01x + 0.01x + 0.99x = 40.8 1.02x = 40.8
			x = 40
			Partial pressure of $C_2H_4 = CO = H_2 = 0.01 \times 40$
			$= 0.4 \text{ atm OR } 4.053 \times 10^4 \text{ Pa}$
			Partial pressure of $CH_3CH_2CHO = 0.99 \times 40$
			$= 39.6 \text{ atm OR } 4.01 \text{ x } 10^{6} \text{Pa}$
			$K_{p} = \frac{39.2}{(0.4)(0.4)(0.4)}$
			$= 619 \text{ atm}^{-2}$
			OR = 6.03 x 10 ⁻⁸ Pa ⁻²
			Comments:
			 Even though the question did not specify the units, it is better to leave the units according to the units given in the question to minimise conversion errors. The K_p expression should not have square brackets or contain multiplication signs.
		(ii)	The conditions used for the manufacturing of propanal in the OXO process is 480 K and 100 atm in the presence of a rhodium based catalyst.
			Explain the conditions used for the manufacture of propanal. [2]
			As the reaction is exothermic, a low temperature will shift the position of equilibrium to the right to release heat. However, a moderate temperature is used as too low a temperature would lead to a slow rate of reaction.
			A high pressure would shift the position of equilibrium to the right as there are less moles of gases on the right and this would also increase rate of reaction. However, a moderate pressure is used as too high a pressure would incur high costs.

		A catalyst is used to increase the rate of reaction.
		Comments:
		For these types of questions, you need to cover the following points:
		 Considerations of rate (wrt pressure, temperature) Slow rate when low temperature and pressure used/increase temperature and pressure to increase rate Catalyst: to increase rate Considerations of POE (wrt pressure and temperature) Temperature: discuss about POE by considering that production of propanal is exothermic Pressure: discuss about POE by considering that there is less moles of gas on the product side Costs considerations to maintain high pressure It is not necessary to discuss about why the use of a catalyst, higher temperature and pressure increases rate of reaction (i.e. the collision theory) as this is not the focus of the question.
(b)	of a brom A typ propa	Grignard reagent is a class of covalent compounds involving magnesium. One example Grignard reagent is CH ₃ MgBr which is prepared by treating magnesium metal with nomethane in an ether solvent. wical example of the use of a Grignard reagent is the two-step reaction of CH ₃ MgBr with anal, CH ₃ CH ₂ CHO, to form butan-2-ol. MgBr + CH ₃ CH ₂ CHO $\xrightarrow{\text{step I}}$ CH ₃ $\xrightarrow{OMgBr}_{L-H}$ $\xrightarrow{CH_3}$ \xrightarrow{OH}_{L-H} + Mg(OH)Br $\xrightarrow{CH_2CH_3}$
	(i)	State the types of reaction for steps I and II. [2]
		step I: Nucleophilic addition
		step II: Hydrolysis
		Comments:
		The question already stated that Grignard reagent are covalent compounds involving Mg. Hence, we can assume the bond between C and Mg and also between O and Mg is
		covalent. For step I, we observe that CH_3MgBr "adds" across the C=O bond in CH_3CH_2CHO , where CH_3 goes to C and MgBr goes to O (just like for HCN, the CN goes to C and H goe to O)
		$H_3C - MgBr$ δ_+ δ_+ δ δ CH_3 OMgBr

	Since step II involves water breaking the covalent bond beteeen O and Mg, it is hydrolysis.
	Acid base is only when the oxygen is a free RO^- ion, i.e. a conjugate base then the reaction with H_2O will be acid base as the free RO^- ion will accept H^+ to become ROH.
(ii)	State the reagents and conditions to convert butan-2-ol to 2-bromobutane. [1]
	NaBr, concentrated H ₂ SO ₄ OR HBr OR PBr ₃ , heat
	Comments
	Any aq state symbols are not accepted as HBr will dissociate into H_3O^+ and Br^- thus no longer able to react with butan-2-ol.
	Likewise, PBr_3 (like PCl_5) will react with water in aq medium thus is no longer able to react with butan-2-ol.
	"R" and "S" are used to denote enantiomers. R and S isomers rotate plane polarised light in opposite directions.
	The R isomer of $CH_3CH_2CHBrCH_3$ is shown below.
	H ₃ C CH ₂ CH ₃
	When a sample of the R isomer of $CH_3CH_2CHBrCH_3$ is heated with $CH_3O^-Na^+$ in methanol, the S isomer of $CH_3CH_2CH(OCH_3)CH_3$ is obtained.
(iv)	Name and draw the reaction mechanism for this reaction using the given structure of the R isomer of CH ₃ CH ₂ CHBrCH ₃ . Show relevant lone pairs of electrons, dipoles and curly arrows. [3]
	Nucleophilic substitution <u>S_N2</u>
	$ \begin{array}{c} \overset{\delta-\text{Br}}{\underset{H_{3}C}{\overset{\delta+C}{\underset{H_{2}CH_{3}}{\overset{H_{3}C}{\overset{H_{1}}{\underset{H_{3}C}{\overset{H_{1}}{\underset{H_{3}C}{\overset{H_{1}}{\underset{H_{3}C}{\overset{H_{1}}{\underset{H_{3}C}{\overset{H_{1}}{\underset{H_{3}C}{\overset{H_{1}}{\underset{H_{3}C}{\overset{H_{1}}{\underset{H_{3}C}{\overset{H_{2}CH_{3}}{\underset{H_{3}C}{\overset{H_{3}$
	$\label{eq:comments} \frac{\text{Comments}}{Since the question stated that when the "R" enantiomer is reacted with the nucleophile, the "S" enantiomer is formed, this implies an inversion of configuration, thus the mechanism MUST be S_N2.$
	 Note that the mechanism must have the following: Title must include S_N2 Partial charges on C and Br Lone pair on O Curly arrows x 2

		 Inversion about the chiral C (the OCH₃ must be bonded to the C on the opposite side of the original Br)
(v	/)	In the presence of CH ₃ O ⁻ Na ⁺ , the R isomer of 3-bromobutanoic acid, CH ₃ CH(Br)CH ₂ COOH is converted to CH ₃ CH(Br)CH ₂ COO ⁻ Na ⁺ .
		When the R isomer of $CH_3CH(Br)CH_2COO^-Na^+$ is reacted with $CH_3O^-Na^+$ followed by acidification, the R isomer of $CH_3CH(OCH_3)CH_2COOH$ was obtained.
		$H_{3}C$ H
		Explain why this is so. [1]
		The <u>COO⁻</u> group substitutes/attacks/displace the Br resulting in the S isomer, then the <u>$^{-}OCH_{3}$ substitutes/attacks/displace the COO⁻</u> group resulting in the R isomer again. (or wtte)
		OR S _N 2 occurred twice
		Comments
		$ \begin{array}{c} \stackrel{\delta - Br}{\longrightarrow} \\ \stackrel{\delta + C}{\longrightarrow} \\ \delta + C$
		In step 1, an $S_N 2$ attack by the COO ⁻ and inverts the stereochemistry around the alkyl bromide and forms the S isomer.
		In step 2, another S_N 2 attack by the ${}^{-}OCH_3$ inverts the stereochemistry again and forms the R isomer.
		We cannot state the S_N1 reaction occurred since S_N1 results in a racemic mixture of R and S isomers due to the planar carbocation intermediate that can be attacked by the nucleophile from either side. However, in this case, the R isomer is formed, not a racemic mixture.
(v	vi)	Explain why 3-bromobutanoic acid is a stronger acid than butanoic acid. [2]
		The bromine group is electron withdrawing and electronegative, hence it disperses the negative charge, of $CH_3CH(Br)CH_2COO^-$ to a greater extent, hence $CH_3CH(Br)CH_2COO^-$ is more stable than $CH_3CH_2CH_2COO^-$ or conjugate base of 3-bromobutanoic acid is more stable.
		Comments
		Do not state that 3-bromobutanoic acid is more stable than butanoic acid as it is the conjugate base, $CH_3CH(Br)CH_2COO^-$ that is more stable than $CH_3CH_2CH_2COO^-$.

(c)	with diges	noic acid can be converted to calcium butanoate, (CH ₃ CH ₂ CH ₂ COO) ₂ Ca when reacted calcium hydroxide. Calcium butanoate supplements are sometimes used to support stive health as it is known to have anti-inflammatory properties and supports the health e colon.
	(i)	Write an equation for the reaction between butanoic acid and calcium hydroxide. [1]
		$Ca(OH)_2 + 2CH_3CH_2CH_2COOH \rightarrow (CH_3CH_2CH_2COO)_2Ca + 2H_2O$
		 Comments The equation should not be written where butanoic acid or calcium butanoate is the molecular form, C₄H₈O₂ or (C₄H₇O₂)Ca as it is important to show where the proton is dissociated from in butanoic acid. And it is only possible to show if the structural formula is used. You should also not represent butanoic acid as C₃H₇COOH as C₃H₇ can be straight or branched chain. Note that calcium hydroxide is Ca(OH)₂, since there is two OH⁻, the mole ratio with butanoic acid is 1:2, not 1:1. Do note that state symbols are NOT required, but any incorrect state symbols will still be penalised.
	(ii)	Given that the solubility of calcium butanoate is 0.0161 mol dm ⁻³ , calculate the K_{sp} of calcium butanoate stating its units. [2]
		$[Ca^{2+}] = 0.0161 \text{ mol } dm^{-3}$ $[CH_3CH_2CH_2COO^{-}] = 2 \times 0.0161 = 0.0322 \text{ mol } dm^{-3}$ $\mathcal{K}_{sp} = [Ca^{2+}][CH_3CH_2CH_2COO^{-}]^2$
		= $0.0161 \times (0.0322)^2$ = $1.67 \times 10^{-5} \text{ mol}^3 \text{ dm}^{-9}$
		 Comments A common mistake is to equate K_{sp} to (0.0161)³ Note that [CH₃CH₂CH₂COO⁻] is twice that of [Ca²⁺]
	(iii)	Calculate the solubility of calcium butanoate in a solution containing 0.1 mol dm ⁻³ of calcium chloride. [1]
		Let the solubility = x $[Ca^{2+}] = x + 0.1$ (x from calcium butanoate, 0.1 from CaCl ₂) $[CH_3CH_2CH_2COO^-] = 2x$ (only from calcium butanoate)
		$(x+0.1)(2x)^2 = 1.67 \times 10^{-5}$ (assume x+0.1 = 0.1) $4x^2 = 1.67 \times 10^{-4}$ $x = 6.46 \times 10^{-3}$ mol dm ⁻³
		 <u>Comments</u> A common error was to assume that [CH₃CH₂CH₂COO⁻] is twice that of [Ca²⁺]. This is incorrect as CH₃CH₂CH₂COO⁻ only comes from (CH₃CH₂CH₂COO)₂Ca but Ca²⁺ comes from (CH₃CH₂CH₂COO)₂Ca and CaCl₂.
	(iv)	The ΔG^{e}_{sol} of an ionic compound in J mol ⁻¹ , is given by the following expression. $\Delta G^{e}_{sol} = -RT \ln K_{sp}$

Calculate the ΔG^{Θ}_{sol} in kJ mol ⁻¹ , for calcium butanoate. [1]
$\Delta G^{\theta}_{sol} = -8.31 \times 298 \times \ln(1.67 \times 10^{-5})$ = +27240 J mol ⁻¹ = + <u>27.2</u> kJ mol ⁻¹
 Comments Do note that temperature should be 298K as it is standard conditions, not 293K or 273K You should also put the + sign in front of your answer.
[Total: 20]

