Suggested Solutions

No.	Solution					Remark
1(a)	$R = 68 \Omega$					[1]
	<i>I</i> = 121.1 mA					 for correct d.p and unit in I and y
	y = 41.2	2 cm				
1(b)						
	R/Ω y/cm I/mA $\frac{R}{y}/\Omega$ m ⁻¹ IR/V				[1] - headings and units - 5 sets of data	
	56	42.5	121.1	130	6.8	[1]
	68	41.2	121.1	170	8.2	- d.p. of raw data
	82	40.0	121.0	210	9.9	- s.f. of processed data
	100	38.5	121.0	260	12.1	[1] correct calculation,
	120	37.7	121.2	318	14.5	allow 1 slip
1(c)	Refer to	o attache	d graph.			[1] axes: units, scale
						[1] plotted points accurate to half of smallest division
						[1] best fit line
1(c)	Given $\frac{R}{y} = \frac{QIR}{F} - Q$ Graph of $\frac{R}{y}$ vs <i>IR</i> is plotted, where $\frac{Q}{F}$ is the gradient and $-Q$ is the <i>y</i> -intercept. Gradient= $\frac{305-137.5}{14.0-7.0} = 23.9$ $\Rightarrow \frac{Q}{F} = 23.9$ Substitute (14.0,305) into the equation, 305 = (23.9)(14.0) + (-Q) Q = 29.6 Since $\frac{Q}{F} = 23.9$ $\Rightarrow \frac{29.6}{F} = 23.9$					[1] - Big triangle - substitution of gradient coordinates [1] $\frac{Q}{F}$ calculated correctly [1] Q calculated correctly [1] <i>F</i> calculated correctly
	F = 1.23 F = 1.23 V $Q = 29.6 \Omega \text{ m}^{-1}$					[1] Q and <i>F</i> with correct units

1(d)	$d_1 = 0.19 \text{ mm}$ $d_2 = 0.19 \text{ mm}$	
	Diameter of wire, $d = \frac{0.19 + 0.19}{2} = 0.19$ mm Given $Q = \frac{4\rho}{\pi d^2}$ $Q\pi d^2$	[1]- correct measurementswith unit and d.p- repeated measurement
	$\rho = \frac{1}{4}$ $= \frac{29.6 \times \pi \times (0.19 \times 10^{-3})^2}{4}$ $= 8.39 \times 10^{-7} \Omega \mathrm{m}$	[1] $ ho$ calculated correctly

No.	Solution					Remarks	
2(a)(i)	$\theta_1 = 60^{\circ}$ $\theta_2 = 60^{\circ}$					[1] - correct measurements	
	$\theta = \frac{60^{\circ}}{10^{\circ}}$	$\frac{+60^{\circ}}{2} = 6$	60°				 repeat measurement nearest degree
2(a)(ii)	$n_1 = 11$ $n_2 = 11$ $n = \frac{11 + 11}{2} = 11$				[1] correct measurements [1] repeat measurement		
2(b)	Given $n = k \tan \theta$ $k = \frac{n}{\tan \theta} = \frac{11}{\tan 60^\circ} = 6.4$					 [1] <i>k</i> calculated correctly [1] answer for <i>k</i> in 2 s.f 	
2(c)					I	-	
	θ/°	<i>n</i> 1	n ₂	n	$k = \frac{n}{\tan \theta}$		[1] - headings and units - 3 sets of data
	60	11	11	11	6.4		- no d.p for raw data
	70	14	14	14	5.1		- correct s.f for processed
	80	26	26	26	4.6		
					·	-	[1] correct calculation
2(d)	For $\theta = 90^{\circ}$, the two pendulums will <u>make contact</u> with the wooden rod at the same length.			[1]			
	Hence both pendulums will <u>always oscillate in</u> phase.						

No.	Solution					Remarks
3(a)(i)	$L = \frac{26.2 + 2}{2}$ $h = \frac{71.8 + 2}{2}$	 [1] - correct unit and measurement for <i>h</i> and <i>L</i>. - repeat measurement 				
3(a)(ii)	$\frac{h}{L} = \frac{71.8}{26.2} =$	[1] - correct calculation - answer in 3 s.f				
3(a)(iii)	Let $Y = \frac{h}{L}$ $\frac{\Delta Y}{Y} = \frac{\Delta h}{h} +$ Percentage	[1] for correct percentage uncertainty (1 or 2 s.f.) [1] Accept $\Delta h \& \Delta L =$ 0.2 or 0.3 cm				
3(b)	<i>m</i> /g 100 200 300 400 500	h/cm 71.8 79.8 84.1 86.7 88.5	L/cm 26.2 18.2 13.9 11.3 9.5	h 2.74 4.38 6.05 7.67 9.3		 [1] headings and units 5 sets of data d.p, units of raw data s.f of processed data [1] correct calculation

		F 4 3
	Width $u = \frac{1.3 + 1.3}{2} = 1.3$ cm	[1] - correct unit and
	Z Distance meyod daym by backgow blade	measurement of μ
	Distance moved down by nacksaw blade,	- repeat
	$a = \frac{14.6 + 14.5}{100} = 14.6 \text{ cm}$	measurement for u
	2	only
	$4MgL^3$	- correct d.p
	Given $a = \frac{1}{Yut^3}$	
	$(10^{-3})^{3}$	[1]
	\rightarrow Y = $\frac{4MgL^3}{MgL^3} = \frac{4 \times 100 \times 10^{-3} \times 9.81 \times (26.8 \times 10^{-3})}{10^{-3} \times 9.81 \times (26.8 \times 10^{-3})}$	- correct
	aut^{3} 14 6 × 10 ⁻² × 1.3 × 10 ⁻² × (0.79 × 10 ⁻³) ³	measurement of a
		- repeat
	$= 8.07 \times 10^{10} \text{ Pa}$	measurement
	$= 80.7 \times 10^{9} \text{ Pa}$	- correct d.p
	= 81 GPa	
		[1] Y calculated
		correctly
3(e)(ii)	- difficulty in determining the vertical deflection <i>a</i> of the ruler.	[1] any one
	- slotted weights may not be securely attached to the end of	
	the ruler which may result in movement or slipping of the	
	weights.	
2(a)(;;;)	V is the stiffness of the motol	
3(e)(iii)		
	The value of V for wood is 12 GPa which is much lower than	[1]
	value of the metal in (a)(i) This mean the wood is less stiff	[']
	and more prope to deformation under load	
	and more prone to deformation and ridde.	
	When the same load is placed at the end of the wooden	
	beam with the same dimensions as the metal hacksaw	
	blade, the wooden beam will bend more and break.	
	(deflection for metal blade will be smaller and more linear).	

8

<u>Diagram</u>

depends on the intensity <i>I</i> of the incident light and distance <i>d</i> from the lamp. Diagram Refer to diagram above.	 [2] feasible set up and labelled diagram, e.g. correct circuit diagram voltmeter // LDR ammeter in series with LDR orientation of lamp and LDR ruler measuring distance d intensity meter measuring intensity of source
Experiment 1 – to determine <i>p</i> Independent variable: Distance <i>d</i> from the lamp Dependable variable: Resistance <i>R</i> of the LDR Controlled variable: - Intensity <i>I</i> of the incident light - Alignment of lamp with LDR - Ambient light intensity	[1] correct variables for Experiment 1

Pr	ocedure:		
a)	Set up the apparatus as shown in the diagram above.	[2] for correct and	
b)	Measure the distance d between the lamp and the LDR using a metre rule. Set $d = 10.0$ cm.	detailed procedure	
c)	Place the intensity meter beside the LDR. Close the circuit.	[1] mention of apparatus for different	
d)	Switch off the light in the laboratory and switch on the lamp and shine it on the LDR.	measurement	
e)	Check the intensity of the lamp using a intensity meter to ensure that it is constant during the experiment.	LDR,	
f)	Measure the potential difference across the LDR and the	- intensity <i>I</i> of the lamp,	
	ammeter respectively.	- potential difference V	
g)	Record the voltmeter and ammeter readings. The	across LDR	
	resistance of the LDR can be calculated using $R = \frac{i}{i}$	- current <i>i</i>	
h)	Increase the distance <i>d</i> and repeat step (e) to (g) to get six readings of <i>V</i> , <i>i</i> and <i>R</i> .		
i)	Based on the equation $R = k d^p I^q$, we get $\lg R = p \lg d + \lg (kI^q)$. Plot a graph of $\lg R$ against $\lg d$, where p is the gradient.	[1] correct graph plotted	
Ex	periment 2 – to determine <i>q</i>		
Ine	dependent variable: Intensity I of the incident light	[1] correct variable for Experiment 2	
De	pendable variable: Resistance R of the LDR		
Co	ontrolled variable: - Distance <i>d</i> from the lamp - Alignment of lamp with LDR - Ambient light intensity		
j)	Repeat (e) to (g) using lamp of different intensity at the same distance <i>d</i> to get six readings of <i>V</i> , <i>i</i> and <i>R</i> .		
k)	Based on the equation $R = k d^{p} I^{q}$, we get $\lg R = q \lg I + \lg (kd^{p})$. Plot a graph of $\lg R$ against $\lg I$, where q is the gradient.	[1] correct graph plotted	

Pr	ecautions for accuracy:	
1.	Conduct preliminary experiments by choosing the longest distance d and maximum intensity I so as to obtain a workable range for R .	[1] any 1
2.	The lamp and the LDR can be fixed at a particular position using adhesive tape.	[1] any 1
3.	In Experiment 2, the rheostat can be adjusted to vary the current flowing through the lamp, hence changing the intensity of the lamp.	
4.	The experiment should be conducted in a dark room so that the intensity of other light sources would not interfere with the variation of the resistance of the LDR.	
5.	The intensity meter, lamp and the LDR can be placed in a black cardboard tube/container to minimize the light from the surroundings from reaching the LDR or intensity meter.	
Pro	ecautions for safety:	
1.	Do not look directly at the lamp. Wear sun glasses if the intensity of the lamp is too high.	
2.	Do not touch the lamp with bare hands. Wear gloves when handling the lamp.	[1] any 1