

Raffles Girls' School

(SECONDARY)

Name:

Class:

Register No:

CHEMISTRY YEAR FOUR

Questions marked with an asterisk * are not tested in CBA 1. Please skip these questions when doing your revision.

For examiners' use

Pen-and-Paper Assessment

Friday

06 May 2022

INSTRUCTIONS TO CANDIDATES

Write your name and register number in the spaces provided. Write in dark blue or black ink.

For **Section A**, indicate your answers on the separate Answer Sheet provided.

Answer all other questions in the space provided.

All quantitative answers should include appropriate units and significant figures.

Omission of statements and working may result in loss of marks.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

The use of an approved scientific calculator is expected, where appropriate.

A copy of the Periodic Table is on page 12.

The total number of marks for this paper is **40** and the weighting is **20%**.

Parent's / Guardian's Name: ______ Signature: ______ Date: _____

This Question Paper consists of **12** printed pages, including the cover page.

1 hour

Question / Section	Marks Obtained									
Section	A / 10									
1-10										
Section	В/30									
11	/4									
12	/6									
13	/11									
14	/9									
statement/ units/ sig. fig.										
Total	40									

Section A – Multiple Choice Questions [10 marks]

Answer all questions. For each question, there are four possible answers (**A**, **B**, **C**, and **D**). Choose the most appropriate answer and record your choice in the separate Answer Sheet provided.

***1** The diagram shows the reactions of solution E.

What are the ions present in solution E?

- **A** zinc ions and nitrate ions
- **B** lead(II) ions and chloride ions
- **C** aluminium ions and nitrate ions
- **D** ammonium ions and chloride ions
- *2 The following observations are recorded after tests are carried out on a green solid.
 - Test 1: Upon strong heating, green solid turns black.
 - Test 2: Effervescence is observed when dilute nitric acid is added to the green solid. Upon adding aqueous barium nitrate to the resultant mixture, no visible reaction is seen.

What is the identity of the green solid?

- A iron(III) sulfate
- **B** iron(III) carbonate
- **C** copper(II) sulfate
- D copper(II) carbonate

***3** In an experiment, 4.0 cm³ of 1.0 mol/dm³ iron(III) sulfate solution is mixed with 4.0 cm³ of 1.0 mol/dm³ sodium hydroxide solution.

What is observed at the end of the reaction?

- **A** green precipitate in yellow solution
- **B** green precipitate in colourless solution
- **C** reddish brown precipitate in yellow solution
- **D** reddish brown precipitate in colourless solution
- 4 In which reaction does the underlined reactant undergo oxidation?
 - $\textbf{A} \quad \underline{PbO}(s) \ + \ CO(g) \rightarrow Pb(s) \ + \ CO_2(g)$
 - $\textbf{B} \quad 2H_2S(g) \ + \ \underline{SO_2}(g) \ \rightarrow \ 3S(g) \ + \ 2H_2O(l)$
 - $\textbf{C} \quad \underline{Ca(OH)_2}(aq) \ + \ CO_2(g) \ \rightarrow \ CaCO_3(s) \ + \ H_2O(l)$
 - $\label{eq:constraint} \textbf{D} \quad \text{KClO}(aq) \ + \ \underline{\text{SO}_2}(g) \ + \ \text{H}_2\text{O}(l) \rightarrow \ \text{KCl}(aq) \ + \ \text{H}_2\text{SO}_4(aq)$
- ***5** Four experiments are carried out to investigate the factors that affect the rusting of iron.

Which row shows a decreasing rate of rusting for the four experiments?

- **A** 1, 2, 3, 4 **B** 1, 3, 2, 4
- **C** 3, 4, 1, 2
- **D** 3, 1, 4, 2

6 Which substance will decolourise aqueous bromine?

- A chlorine gas
- **B** aqueous iron(II) sulfate
- C aqueous iron(III) nitrate
- **D** aqueous sodium chloride

7 Two elements J and M form ionic compounds, JBr₂ and M₂O₃. The molten compounds are electrolysed using inert electrodes in separate experiments.

What are the products formed at the anodes?

- A J and M
- **B** bromine and oxygen
- **C** hydrogen and oxygen
- **D** hydrogen and bromine
- 8 Which row shows the products formed during electrolysis?

	electrolyte	prod	lucts
Α	dilute magnesium nitrate	magnesium	oxygen
В	concentrated magnesium nitrate	magnesium	oxygen
С	dilute hydrochloric acid	hydrogen	chlorine
D	concentrated hydrochloric acid	hydrogen	chlorine

9 The diagram shows three simple cells.

Which row represents cell 3?

	positive electrode	negative electrode	Voltage /V
Α	R	Q	+0.8
В	R	Q	+1.4
С	Q	R	-0.8
D	Q	R	-1.4

***10** A series of experiments is conducted to determine that the reactivity of three metals in descending order is Z, X and Y.

Which experiment is unnecessary?

- $\textbf{A} \quad X(s) + H_2O(l) \rightarrow \text{no reaction}$
- $\textbf{B} \quad X(s) + YO(s) \rightarrow XO(s) + Y(s)$
- $\textbf{C} \quad Z(s) + YSO_4(aq) \rightarrow ZSO_4(aq) + Y(s)$
- $\textbf{D} \quad Z(s) + 2H_2O(l) \rightarrow Z(OH)_2(aq) + H_2(g)$

----- End of Section A -----

Section B – Structured Questions [30 marks]

Answer ALL questions and write your answers in the spaces provided.

11 Pieces of tin are added to 250 cm³ of 2.0 mol/dm³ aqueous copper(II) sulfate. The blue solution is observed to turn completely colourless after a while. The equation for the reaction is shown.

 $Sn(s) + CuSO_4(aq) \rightarrow SnSO_4(aq) + Cu(s)$

.....

- *(a) State one other observation.
 - (b) Calculate the mass of tin used in this reaction.

[1]

[1]

(c) The resultant reaction mixture is filtered. The filtrate is heated until saturation and then cooled. 111.6 g of hydrated tin(II) sulfate, SnSO₄.H₂O, is obtained.

Calculate the percentage yield of hydrated tin(II) sulfate.

[Total: 4]

*12 The diagram shows the reaction scheme of two elements, a grey metal **P** and a black solid **Q**.

- **13** Electrolysis of dilute zinc sulfate solution using graphite electrodes is conducted using the set up shown.
 - (a) Label the anode and cathode, and indicate the direction of electron flow.

(e) A student predicts that the products obtained will be the same if dilute zinc sulfate solution is replaced with dilute copper(II) nitrate solution.

State and explain if you agree with this prediction.

[3]

[Total: 11]

14 The table shows the reactions between four metals and excess dilute hydrochloric acid at room temperature and pressure. The metals have equal number of moles.

experiment	metal added	total volume of hydrogen gas evolved / cm³	observations
1	aluminium	144	very slow reaction at first,
			after 1 minute.
2	iron	96	slow reaction
3	X	144	moderately rapid reaction
4	zinc	96	rapid reaction

*(a) Arrange the four metals in order of decreasing reactivity.

.....[1]

*(b) Explain the observations in experiment 1.

*(c) Using the information from the table above, predict and explain the charge of the metal **X** ion formed in experiment 3.

(d) (i) Write the chemical equation for the reaction in experiment 4.

.....[1]

(ii) Explain, in terms of oxidation states, why the reaction in experiment 4 is a redox reaction.

.....[2]

(iii) Calculate the mass of zinc used in experiment 4.

[1]

[Total: 9]

----- End of Section B -----

				-							_			5				_				_						F			E
	0	2	He	4	10	Ne	neon	20	18	Å	argon 40	36	Ł	kryptoi	84	54	×e	xenon	1.51	86	צ	radon -				11	Ξ	175 175	103	ב	lawrenci -
	١١٨				ი	L	fluorine	19	17	Cl	chlorine 35.5	35	Ъ	bromine	80	23	Ι	iodine	171	85	At	astatine –				20	٩۲	ytterbium 173	102	٩	nobelium -
	N				80	0	oxygen	16	16	ა	sulfur 32	34	Se	selenium	79	52	Те	tellurium	871	84	P	polonium -	116	Ľ		69	ш	thulium 169	101	Md	mendelevium -
	>				7	z	nitrogen	14	15	٩	phosphorus 31	33	As	arsenic	75	51	Sb	antimony	771	83	Bi	bismuth 209				68	ш	erbium 167	100	Еm	fermium -
	≥				9	ပ	carbon	12	14	Si	silicon 28	32	Ge	germanium	73	50	Sn	ti.	61.1	82	РЬ	lead 207	114	F <i>l</i>		67	۴	holmium 165	<u> </u>	Es	einsteinium _
	=				2	В	boron	11	13	Al	aluminium 27	31	Ga	gallium	70	49	In	indium	CII	81	Τ1	thallium 204				99	2	dysprosium 163	98	បី	californium -
												30	Zn	zinc	65	48	в	cadmium	71.1	80	Нg	mercury 201	112	C		65	Ъ	terbium 159	97	BK	berkelium -
												29	Cu	copper	64	47	Ag	silver	8 <u>0</u>	6/	Au	gold 197	111	Rg		64	B	gadolinium 157	96	С	curium
	2											28	Ĭ	nickel	5 9	46	Р	palladium	9 <u>0</u>	/8	£	platinum 195	110	Ds		63	Ē	europium 152	95	Am	americium -
ש ש ש	5											27	ပိ	cobalt	59	45	Rh	rhodium	102	"	Ir	iridium 192	109	Mt		62	Sm	samarium 150	94	Pu	plutonium -
		-	H hvdroden	1 1								26	Fe	iron	56	44	Ru	ruthenium	1.01	9/	0s	osmium 190	108	Hs		61	Pm	promethium -	<u>93</u>	dN	neptunium -
ש					-							25	Mn	manganese	55	43	Tc	technetium	•	<i>۹)</i>	Re	rhenium 186	107	Bh		60	PN	neodymium 144	92		uranium 238
					umber	00		mass				24	ບັ	chromium	52	42	Мо	molybdenum	8	/4	\geq	tungsten 184	106	Sg		59	ፈ	praseodymium 141	91	Pa	protactinium 231
				Key	(atomic) n	mic syml	name	ve atomic				23	>	vanadium	51	41	qN	niobium	33	/3	Ta	tantalum 181	105	Db		58	မီ	cerium 140	06	Th	thorium 232
					proton	ato		relati				22	F	titanium	48	40	Zr	zirconium	А	2	Ħ	hafnium 178	104	Rf		57	La	lanthanum 139	89	Ac	actinium -
												21	Sc	scandium	45	39	≻	yttrium	89	1/ - /9	lanthanoids		89 - 103	actinoids		s					
	=				4	Be	beryllium	ი	12	Mg	magnesium 24	20	Ca	calcium	40	38	Sr	strontium	88	96	Ba	barium 137	88	Ra		Inthanoid			actinoide		
	_				e	:	lithium	~	1	Na	sodium 23	19	¥	potassium	39	37	Rb	rubidium	8	çç	ပိ	caesium 133	87	ŗ		10					

The volume of one mole of any gas is 24 \mbox{dm}^3 at room temperature and pressure (r.t.p.).