Solutions to Statistics 8 Tutorial: Correlation & Linear Regression

<u>Activity</u> Can you draw the least square line for a set of points without computing the line? Consider the set of 9 points (0,0), (0,1), (0,-1), (1,0), (-1,0), (1,1), (1,-1), (-1,1), (-1,-1) shown in the diagram below.

What do you think is the least square line for these 9 points? Draw it on the diagram.

Now, try obtaining the least square line using the the GeoGebra applet: https://www.geogebra.org/m/t5nbhyBf

Questions to ponder:

- 1. What do you observe between the line you have proposed and the one obtained using the Geogebra app?
- 2. Why do this happen?

Further questions to ponder:

- 1. For any set of points, is it always possible to have a least square of zero?
- 2. When will this happen?

Solution

Basic Mastery Questions

- 1. Sketch scatter diagrams indicating the following:
 - (a) A linear (product-moment) correlation coefficient close to zero but an obvious relation between the variables.
 - (b) A non-linear relation between the variables yielding a correlation coefficient of +1.

2. The diagrams below show the two regression lines (y on x and x on y) for three different bivariate distributions. The scales along the two axes *OX* and *OY* are the same in each diagram.

Explain, in each case, what the diagram tells us about the correlation between the variables *X* and *Y*. What does the point *P* represent?

Solution:

- 2. (i) X and Y have a strong positive linear relationship.
 - (ii) Impossible diagram as the gradient of the 2 lines must be of the same sign.
 - (iii) X and Y have a weak negative linear relationship.

The point *P* represents $(\overline{x}, \overline{y})$.

3. Ten students sat for two physics tests, one practical and the other theoretical. Their marks out of 10 are recorded in the following table.

Practical test	8	6	10	8	5	6	8	10	7	7
Theoretical test	6	7	8	6	7	4	9	10	5	8

Draw a scatter diagram of the pairs of marks.

Calculate the product moment correlation coefficient for the data.

A student was absent from the theoretical test but obtained a mark of 6 in the practical test. Use the appropriate regression line to estimate a mark in the theoretical test for this student. Comment on the reliability of this estimate.

Solution:

From GC, r = 0.553.

Let x = mark of practical test, y = mark of theoretical test

Use regression line of *y* on *x*: y = 2.4081 + 0.6122x. When x = 6, y = 6.08.

This estimate is NOT reliable as the value of r (not close to ± 1) and the scatter plot does not indicate a strong correlation between the practical and theoretical test marks.

4. 2010/NYJC/II/7

An experiment was conducted to investigate the relationship between the amount of unreacted chemical, x, and the time that elapsed since the start of the experiment, t.

x	25.5	28	31	33.5	41	43.5	45.5	51	57.5	58	73
t	46	44	35.5	30	20	15.6	17	12.3	11	8.3	6

If there was an error in recording the *t* values and all the *t*-values must be increased by 3, what would be the effect on

- (a) \overline{t} ,
- (b) standard deviation of *t*,
- (c) the correlation coefficient, *r*?

Solution:

- (a) \overline{t} will increase by 3
- (b) standard deviation of *t* remains the same
- (c) *r* remains unchanged