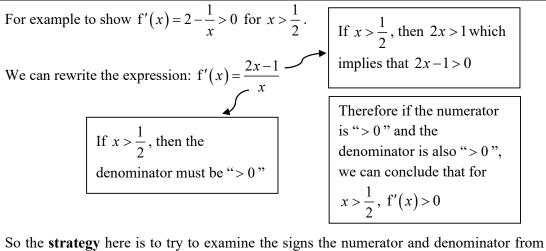


RAFFLES INSTITUTION H2 Mathematics 9758 2023 Year 6 Term 3 Revision 8 (Summary and Tutorial)


Topic: Applications of Differentiation

Summary for Applications of Differentiation

1 Strictly Increasing/Strictly Decreasing & Concavity

IF	Then f is	
f'(x) > 0	Strictly increasing	
f'(x) < 0	Strictly decreasing	over the interval (a,b)
f''(x) > 0	Concave up	
f''(x) < 0	Concave down	

To show "< 0" or "> 0", we can complete the square of the expression if it is quadratic otherwise we can try to "build up the expression" from the given interval.

So the **strategy** here is to try to examine the signs the numerator and denominator from the given condition of $x > \frac{1}{2}$.

2 Methods for determining the nature of a stationary point

Method 1: Second Derivative Test

IF		Then $(k, f(k))$ is
f''(x) > 0	at $x = k$	a minimum turning point
f''(x) < 0		a maximum turning point

Note that if f''(x) = 0 then there is <u>no conclusion</u> about the nature of the stationary point. The <u>first derivative</u> test must then be used.

Method 2: First Derivative Test

To determine the nature of the stationary point at (k, f(k)), we need to check the signs of f'(x) for $x = k^-$ and $x = k^+$.

Important note: you need to fully factorise f'(x) where possible BEFORE discussing the signs of f'(x).

Example: $f(x) = 2x^5 - 5x^3$. It is not sufficient to just differentiate and get

 $f'(x) = 10x^4 - 15x^2$. You need to factorise further to get $f'(x) = 10x^2\left(x - \sqrt{\frac{3}{2}}\right)\left(x + \sqrt{\frac{3}{2}}\right)$, BEFORE discussing stationary points at (0,0), $\left(\sqrt{\frac{3}{2}}, -3\sqrt{\frac{3}{2}}\right)$ and $\left(-\sqrt{\frac{3}{2}}, 3\sqrt{\frac{3}{2}}\right)$ making

reference to the table below.

x	k^{-}	k	$k^{\scriptscriptstyle +}$	k^{-}	k	$k^{\scriptscriptstyle +}$	k^-	k	$k^{\scriptscriptstyle +}$
		0			0		+ve	0	+ ve
f'(x)	+ve	0	– ve	-ve	0	+ ve	-ve	or 0	-ve
Nature of Stationary Point	М	Maximum		Minimum		Stationary point of inflexion			

3 TANGENTS AND NORMALS

To find the equations of the tangent or normal at a point (k, f(k)) on a curve, we need:

Equation of a (straight) line y - f(k) = m(x - k) with gradient *m* passing through (k, f(k)).

- Obtain *m* by finding f'(k) which will the gradient of the tangent at (k, f(k)).
- If the question needs equation of the normal at (k, f(k)), gradient of the normal at

$$(k, f(k))$$
 is $-\frac{1}{f'(k)}$.

When gradient at a point on a curve $f(x)$ is parallel to the			
<i>x</i> -axis	$\mathbf{f}'(x) = 0$	(Usually mean that the numerator of $f'(x) = 0$)	
y-axis	f'(x) is undefined.	(Usually mean that the denominator of $f'(x) = 0$)	

4 MAXIMIZATION AND MINIMIZATION

Some guidelines to solve problems involving maximization and minimization :

- Denote each changing quantity by a variable.
- Write down a formula for the quantity to be maximized or minimized.
- Express the quantity to be maximized or minimized in terms of 1 variable only.
- Differentiate and equate derivative to zero for stationary values.
- Justify if quantity is a maximum or minimum (using 2^{nd} or 1^{st} derivative test).
- Answer the question.

Some strategies

- 1. Identify any right angle triangle by drawing a diagram. Use Pythagoras theorem to relate the two variables.
- 2. Identify similar triangles to relate the two variables.
- 3. Read questions carefully to identify the **constant(s)** used in the questions. That will reduce confusion on what variable to differentiate with respect to.

5 CONNECTED RATES OF CHANGE

Some guidelines to solve questions involving rate of change:

- Denote each changing quantity by a variable.
- Find the equations relating the variables.
- Use the **chain rule** to link up the derivatives.
- Write down the values of the variables and the given rates of change.
- Solve for the unknown rate.

Some strategies

- 1. Write down the rate of change that is given in the question. Use the units to guide you. For example m³s⁻¹ is the rate of change of volume per unit second.
- 2. Write down the rate of change required by the question and use the chain rule to link up the derivative.

For example to find $\frac{dV}{dt}$ and you are given $\frac{dV}{dr}$ and $\frac{dr}{dt}$. Then using chain rule, we can get $\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$.

6 MACLAURIN SERIES Reminder: the formulas are found in MF26.

If f(x) can be expanded as a power series for a given range of x including zero, then

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f^{(3)}(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots \text{ [in MF26]}$$

Binomial Series

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^{r} + \dots$$

The binomial expansion is valid for $|x| < 1$, i.e. $-1 < x < 1$. [in MF26]

Note that we need to have "1" before applying the formula, so if we need to expand $(3+x)^{\frac{1}{2}}$, we can do the following depending on what is required.

• For **ascending** powers of x, we rewrite

$$(3+x)^{\frac{1}{2}} = 3^{\frac{1}{2}} \left(1 + \frac{x}{3}\right)^{\frac{1}{2}}$$

before applying the binomial expansion.

In this case, the expansion is valid for $\left|\frac{x}{3}\right| < 1$ (i.e. small x)

• For **descending** powers of x, we rewrite

$$(3+x)^{\frac{1}{2}} = (x+3)^{\frac{1}{2}} = x^{\frac{1}{2}} \left(1+\frac{3}{x}\right)^{\frac{1}{2}}$$

before applying the binomial expansion.

In this case, the expansion is valid for $\left|\frac{3}{x}\right| < 1$ (i.e. large x)

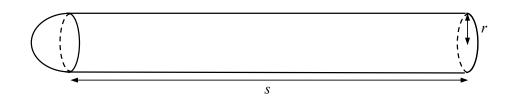
Small angle approximations

For all small angles, positive or negative, we have (1) $\sin x \approx x$ (2) $\cos x \approx 1 - \frac{x^2}{2}$ (3) $\tan x \approx x$, where x is measured in **radians**.

Note that

• If angle x is small, addition or subtraction to angle x may not remain small. i.e $sin(x \pm a) \approx x \pm a$. We need to use addition formula to simplify the expression before applying the small angle approximations.

• For example:
$$\sin\left(x + \frac{\pi}{4}\right) = \sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4} \approx x \left(\frac{1}{\sqrt{2}}\right) + \left(1 - \frac{x^2}{2}\right) \left(\frac{1}{\sqrt{2}}\right)$$


• If x is small, multiple of x is still small.

• For example:
$$\cos(2x) \approx 1 - \frac{(2x)^2}{2}$$

Revision Tutorial Questions

Source of Question: VJC/Promo/2018/01/Q13

1 [It is given that a sphere of radius r has surface area $4\pi r^2$ and volume $\frac{4}{2}\pi r^3$.]

A touchscreen pen is made up of three parts.

- The head is modelled by the curved surface of a hemisphere of radius *r* mm.
- The body is modelled by the curved surface of a cylinder of radius *r* mm and length *s* mm.
- The base is modelled by a circular disc of radius *r* mm.

The three parts are joined together as shown in the diagram. The model is made of material of negligible thickness.

- (i) It is given that the volume of the model is a fixed value $k \text{ mm}^3$, and the external surface area is a minimum. Use differentiation to find the values of r and s in terms of k, simplifying your answers. [7]
- (ii) It is given instead that the volume of the model is 1270 mm^3 and its external surface area is 1290 mm^2 . Show that there is only one possible value of r and find this value. [5]

1(i)
[7] Volume,
$$k = \pi r^2 s + \frac{2}{3}\pi r^3 \implies s = \frac{k}{\pi r^2} - \frac{2r}{3}$$

External surface area is given by
 $A = 2\pi r s + \pi r^2 + 2\pi r^2$
 $= 2\pi r \left(\frac{k}{\pi r^2} - \frac{2r}{3}\right) + 3\pi r^2$
 $= \frac{2k}{r} + \frac{5}{3}\pi r^2$
Let $\frac{dA}{dr} = 0, \implies \frac{10}{3}\pi r - \frac{2k}{r^2} = 0$
 $\implies \frac{10}{3}\pi r^3 = 2k$
 $\implies r = \sqrt[3]{\frac{3k}{5\pi}}$

$$k = \pi r^{2}s + \frac{2}{3}\pi r^{3}$$

$$= \pi \left(\sqrt[3]{\frac{3k}{5\pi}} \right)^{s} + \frac{2}{3}\pi \left(\frac{3k}{5\pi} \right)^{s}$$

$$\Rightarrow \pi \left(\sqrt[3]{\frac{3k}{5\pi}} \right)^{s} = \frac{3k}{5}$$

$$\Rightarrow s = \frac{3k}{5\pi} \left(\frac{5\pi}{3k} \right)^{\frac{3}{2}} = \sqrt[3]{\frac{3k}{5\pi}}$$
(i)

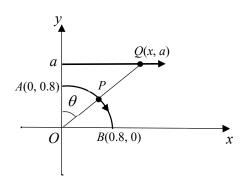
$$\frac{\text{Method 1}}{15} = \frac{1290}{1290 - 2\pi rs + 3\pi r^{2}} - (1)$$

$$1270 = \pi r^{2}s + \frac{2}{3}\pi r^{3} - (2)$$
From (1), $s = \frac{1290 - 3\pi r^{2}}{2\pi r}$
Substitute into (2), $1270 = \pi r^{2} \left(\frac{1290 - 3\pi r^{2}}{2\pi r} \right) + \frac{2}{3}\pi r^{3}$

$$\Rightarrow \frac{5}{6}\pi r^{3} - 645r + 1270 = 0$$
Using GC, $r = 2.0015$, $14.599 \text{ or } -16.601$
Since $r > 0$, $r = -16.6$ is rejected
If $r = 2.0015$,
 $s = \frac{k}{\pi (2.0015)^{2}} - \frac{2(2.0015)}{3} = 99.573$
If $r = 14.599$, $s = -7.8364$
Hence $r = 14.599$ is rejected since s cannot be negative.
So the only value of r is 2.00.

$$\frac{\text{Method 2 (similar to Method 1 actually)}}{r}$$
Given: $k = 1270$, $A = 1290$
From (i), $A = \frac{2k}{r} + \frac{5}{3}\pi r^{2}$
 $\therefore 1290 = \frac{2(1270)}{r} + \frac{5}{3}\pi r^{2}$
 $\Rightarrow \frac{5}{3}\pi r^{3} - 1290r + 2540 = 0$
Using GC, $r = 2.0015$, 14.599 or -16.601
Since $r > 0$, $r = -16.6$ is rejected
If $r = 2.0015$, $s = \frac{k}{\pi (2.0015)^{2}} - \frac{2(2.0015)}{3} = 99.573$
 $\Rightarrow \frac{5}{3}\pi r^{3} - 1290r + 2540 = 0$
Using GC, $r = 2.0015$, 14.599 or -16.601
Since $r > 0$, $r = -16.6$ is rejected
If $r = 2.0015$, $s = \frac{k}{\pi (2.0015)^{2}} - \frac{2(2.0015)}{3} = 99.573$

If r = 14.599, s = -7.8364Hence r = 14.599 is rejected since *s* cannot be negative.


So the only value of r is 2.00.

Source of Question: HCI/Promo/2018/01/Q2

2 [It is given that the arc length of a circle is $r\theta$, where r is the radius of the circle and θ is the angle in radians subtended by the arc and the centre of the circle.]

The points A (0, 0.8) and B (0.8, 0) lie on the circumference of a circle with centre at the origin O and radius 0.8 units. Point P moves from A, along the arc AB in the clockwise direction. Point Q(x,a) moves in the positive x-direction along the line y = a, where a is a constant such that a > 0.8. At time t seconds, points P and Q move at a rate such that O, P and Q are always on a line making an angle of θ radians with the positive y-axis, where

- (i) Show that point *P* is moving along the arc at a rate of $0.8 \frac{d\theta}{dt}$ units per second. [1]
- (ii) Express $\tan \theta$ in terms of x and a. Given that $\frac{dx}{dt} = 0.6$ units per second, find in terms of a and x, the rate at which the point P is moving along the arc. [4]

Solution:

2(i) Arc Length = $S = r\theta$ [1] Speed at which Q is moving = $\frac{dS}{dt} = r\frac{d\theta}{dt} = 0.8\frac{d\theta}{dt}$ (since r is a constant)

(ii)
[14]
$$\tan \theta = \frac{x}{a}$$

$$\sec^{2} \theta \left(\frac{d\theta}{dt} \right) = \frac{1}{a} \left(\frac{dx}{dt} \right)$$

$$\frac{d\theta}{dt} = \frac{\cos^{2} \theta}{a} \left(\frac{dx}{dt} \right)$$

$$\frac{d\theta}{dt} = \frac{0.6 \cos^{2} \theta}{a}$$
From (i),

$$\frac{dS}{dt} = 0.8 \left[\frac{0.6 \cos^{2} \theta}{a} \right]$$
Since

$$\tan \theta = \frac{x}{a}$$

$$\sec^{2} \theta = 1 + \tan^{2} \theta = 1 + \frac{x^{2}}{a^{2}}$$

$$\frac{dS}{dt} = 0.8 \left[\frac{0.6}{a \left(1 + \frac{x^{2}}{a^{2}} \right)} \right]$$

$$\frac{dS}{dt} = \frac{0.48a}{a^{2} + x^{2}} = \frac{12a}{25(a^{2} + x^{2})}$$

Source of Question: CJC/Promo/2018/01/Q7

- 3 A curve C has equation $kx^2 + 2xy 3y^2 = 5$ where k is a non-zero constant.
 - (i) Show that $\frac{dy}{dx} = \frac{kx + y}{3y x}$. [2]
 - (ii) Find the range of values of k such that tangents to the curve C are parallel to the x -axis. [4]
 - (iii) For the case where k = 13, a point P(x, y) moves along the curve C in such a way that its x -coordinate is increasing at a constant rate of 5 units per second. Find the rate of change of its y-coordinate at the instant when x = 1 and y = 2. [2]

3(i)	$kx^2 + 2xy - 3y^2 = 5$
[2]	$2kx + \left(2x\frac{dy}{dx} + 2y\right) - 6y\frac{dy}{dx} = 0$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2kx + 2y}{6y - 2x}$
	$=\frac{kx+y}{3y-x}(\text{shown})$
(ii) [4]	For tangents parallel to x-axis, $\frac{dy}{dx} = 0$, kx + y = 0
	y = -kx
	Substitute $y = -kx$ into C,
	$kx^{2} + 2x(-kx) - 3(-kx)^{2} = 5$
	$x^2\left(-k-3k^2\right)=5$
	$x^2 = \frac{-5}{k+3k^2}$
	Since k is a non-zero constant,
	$k+3k^2 < 0$ ϵ ϵ
	$k(1+3k) < 0 \qquad \frac{\cancel{4}}{\cancel{-4}} \qquad \underbrace{\cancel{4}}_{\cancel{4}} \qquad \underbrace{\cancel{4}}$
	$-\frac{1}{3} < k < 0$
(iii)	$k = 13, x = 1 \text{ and } y = 2, \frac{dx}{dt} = 5$
[2]	
	$\frac{dy}{dx} = \frac{13(1) + (2)}{3(2) - (1)} = 3$
	$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} = 15$ units per second.

Source of Question: EJC/Promo/2018/01/Q6

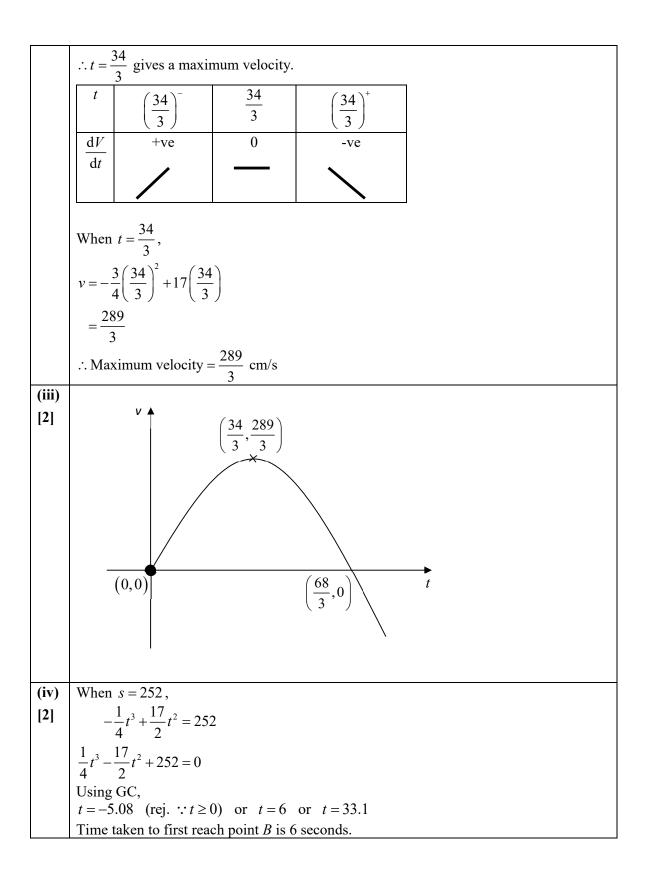
4 A curve *D* has parametric equations $x = a\theta - a\sin\theta$, $y = a - a\cos\theta$, where a > 0 and $0 < \theta < \pi$.

(i) Show that
$$\frac{dy}{dx} = \cot\frac{\theta}{2}$$
. [3]

(ii) Find the exact equation of the normal to the curve at the point for which $\theta = \frac{\pi}{3}$. [4]

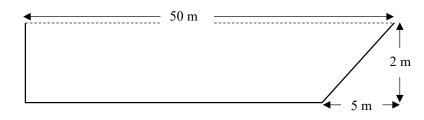
4(i)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = a - a\cos\theta$ and $\frac{\mathrm{d}y}{\mathrm{d}\theta} = a\sin\theta$
[3]	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}\theta} \div \frac{\mathrm{d}x}{\mathrm{d}\theta}$
	$=\frac{a\sin\theta}{a}$
	$a - a \cos \theta$
	$=\frac{\sin\theta}{1-\cos\theta}$
	$\frac{1-\cos\theta}{\theta}$
	$2\sin\frac{2}{2}\cos\frac{2}{2}$ (double angle formula)
	$=\frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\sin^2\frac{\theta}{2}}$ (double angle formula)
	2 2
	$=\cot\frac{\theta}{2}$ (shown)
	2
(ii)	When $\theta = \frac{\pi}{3}$,
[4]	5
	$x = a\left(\frac{\pi}{3}\right) - a\sin\left(\frac{\pi}{3}\right) = \left(\frac{\pi}{3} - \frac{\sqrt{3}}{2}\right)a$ and
	$y = a - a\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}a$
	Gradient of normal $= -\tan\frac{\theta}{2} = -\tan\frac{\pi}{6} = -\frac{1}{\sqrt{3}}$
	Equation of normal:
	$y - \frac{1}{2}a = -\frac{1}{\sqrt{3}} \left[x - \left(\frac{\pi}{3}a - \frac{\sqrt{3}}{2}a\right) \right]$
	$y = -\frac{1}{\sqrt{3}}x + \frac{1}{\sqrt{3}}\left(\frac{\pi}{3}a - \frac{\sqrt{3}}{2}a\right) + \frac{1}{2}a$
	$y = -\frac{1}{\sqrt{3}}x + \frac{a\pi}{3\sqrt{3}}$

Source of Question: MJC/Promo/2018/01/Q4


5 [It is given that velocity is the rate of change of displacement.]

A particle travels in a straight line so that its displacement, s cm, from a fixed point A is

given by
$$s = \frac{17}{2}t^2 - \frac{1}{4}t^3$$
, where *t* is the time in seconds after the start of travel.


- (i) Find the exact values of t at which the velocity of the particle is zero. [2]
- (ii) Use differentiation to find the exact maximum velocity of the particle, proving that it is a maximum. [4]
- (iii) Sketch the velocity-time graph of the particle over the time interval of t seconds, where $t \ge 0$, labelling the axial intercepts and the turning point. [2]
- (iv) Point B is at a displacement of 252 cm from the fixed point A. Find the time taken for the particle to first reach point B.

5(i)	$s = \frac{17}{2}t^2 - \frac{1}{4}t^3$
[2]	
	$v = \frac{\mathrm{d}s}{\mathrm{d}t}$
	$=17t-\frac{3}{4}t^{2}$
	When $v = 0$,
	$17t - \frac{3}{4}t^2 = 0$
	$t\left(17 - \frac{3}{4}t\right) = 0$ $\therefore t = 0 \text{or} t = \frac{68}{3}$
	$\therefore t = 0 \text{or} t = \frac{68}{3}$
	Note: Accept solution using GC
(ii)	$\frac{\mathrm{d}v}{\mathrm{d}t} = -\frac{3}{2}t + 17$
[4]	dt = 2
	When $\frac{\mathrm{d}v}{\mathrm{d}t} = 0$,
	$-\frac{3}{2}t + 17 = 0$
	$t = \frac{34}{3}$
	$\frac{\mathrm{d}^2 v}{\mathrm{d}t^2} = -\frac{3}{2} < 0$

Source of Question: NJC/Promo/2018/01/Q12

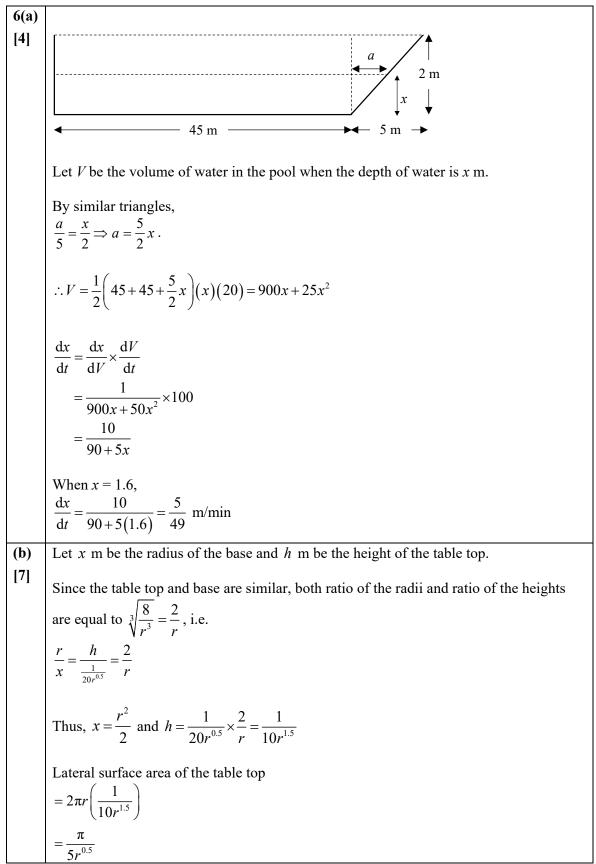
6 (a) The diagram below (not drawn to scale) shows a cross-section of an empty swimming pool measuring 50 m long, 20 m wide and 2 m deep.

Suppose water is being pumped into the pool at a rate of 100 m^3 per min. How fast is the water level in the pool rising when the depth of water is 1.6 m? [4]

- (b) Figure A shows a dining table that consists of 3 parts:
 - a cylindrical table top of radius *r* m,
 - a cylindrical base of height $\frac{1}{20\sqrt{r}}$ m, that is similar to the table top,
 - and a cylindrical body of a fixed radius 0.3 m and height 1 m, attached to the table top and the base.

Figure B shows a side view of the table which is symmetrical about a vertical axis.

The ratio of the volume of the table top to that of the base is to be kept at $8:r^3$.


The curved surface of a cylinder is known as the lateral surface. Show that the total area S, in m², of the lateral surfaces of the three cylinders that form the table is given by

$$\pi\left(\frac{1}{5\sqrt{r}} + \frac{r\sqrt{r}}{20} + K\right),\,$$

where the constant K is to be determined.

Use differentiation to find the exact value of *r* that minimises *S*. [3]

[4]

Lateral surface area of the base

$$= 2\pi \left(\frac{1}{2}r^{2}\right) \left(\frac{1}{20r^{0.5}}\right)$$

$$= \frac{\pi r^{1.5}}{20}$$
Lateral surface area of the body

$$= 2\pi (0.3)(1)$$

$$= 0.6\pi$$

$$S = \frac{\pi}{5r^{0.5}} + \frac{\pi r^{1.5}}{20} + 0.6\pi$$

$$= \pi \left(\frac{1}{5\sqrt{r}} + \frac{r\sqrt{r}}{20} + 0.6\right) \text{ (Shown)}$$

$$\frac{dS}{dr} = \pi \left(\frac{-0.5r^{-1.5}}{5} + \frac{1.5r^{0.5}}{20}\right) = \pi \left(-\frac{1}{10r^{1.5}} + \frac{3r^{0.5}}{40}\right)$$

$$\frac{dS}{dr} = 0$$

$$\Rightarrow \frac{1}{10r^{1.5}} = \frac{3r^{0.5}}{40}$$

$$\Rightarrow 30r^{2} = 40$$

$$\Rightarrow r = \sqrt{\frac{4}{3}} = \frac{2}{\sqrt{3}}$$

$$\frac{d^{2}S}{dr^{2}} = \pi \left(\frac{1.5r^{-2.5}}{10} + \frac{1.5r^{-0.5}}{40}\right) > 0 \text{ for all } r > 0.$$
Thus, S is minimum when $r = \frac{2}{\sqrt{3}}$ (or $\frac{2\sqrt{3}}{3}$).

Source of Question: SAJC/Promo/2018/01/Q3

7 For the curve with equation $40x^2 - 36xy + 9y^2 - 25 = 0$,

(i) show that
$$\frac{dy}{dx} = \frac{2(9y - 20x)}{9(y - 2x)};$$
 [3]

(ii) find the coordinates of the point(s) at which the tangent is parallel to the *y*-axis.

7(i)	$40x^2 - 36xy + 9y^2 - 25 = 0$
[3]	Differentiating with respect to <i>x</i> ,
	$80x - 36x\frac{\mathrm{d}y}{\mathrm{d}x} - 36y + 18y\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
	$40x - 18x\frac{\mathrm{d}y}{\mathrm{d}x} - 18y + 9y\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
	$(9y-18x)\frac{\mathrm{d}y}{\mathrm{d}x} = 18y-40x$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2(9y - 20x)}{9(y - 2x)}$
(ii) [3]	At the point where tangent is parallel to y-axis, $\frac{dy}{dx}$ is undefined. i.e. $y - 2x = 0$
	Substitute $y = 2x$ into the equation of the curve:
	$40x^2 - 36x(2x) + 9(2x)^2 - 25 = 0$
	$40x^2 - 72x^2 + 36x^2 - 25 = 0$
	$x^2 = \frac{25}{4} \implies x = \pm \frac{5}{2}, y = \pm 5$
	Coordinates of the points are $\left(\frac{5}{2}, 5\right)$ and $\left(-\frac{5}{2}, -5\right)$.

Source of Question: MI/Promo/2018/01/Q5(a)

8 Given a function $f(x) = x^2 e^{x^2}$, for $x \in \mathbb{R}$.

- (i) By differentiation, find the range of values of x for which the function is increasing. [4]
- (ii) Hence find the equation of the tangent to the curve, $f(x) = x^2 e^{x^2}$ for $x \in \mathbb{R}$, at the point where x = 1, giving your answer in terms of e. [2]

8(i)	$f(x) = x^2 e^{x^2}$, for $x \in \mathbb{R}$,
[4]	$f'(x) = x^2 (2xe^{x^2}) + 2xe^{x^2}$
	$=2xe^{x^2}\left(x^2+1\right)$
	Since $x^2 + 1 > 0$ and $e^{x^2} > 0$, for all $x \in \mathbb{R}$,
	Therefore when $x > 0$, we have $f'(x) > 0$
	$f'(x) > 0 \Rightarrow f$ is increasing when $x > 0$.
(ii)	When $x = 1$, $f'(1) = 2(1)e(2) = 4e$, $f(1) = e$
[2]	Equation of tangent at $x = 1$:
	$y - \mathbf{e} = 4\mathbf{e}(x - 1)$
	$\therefore y = 4ex - 3e$

Source of Question: ACJC/Promo/2018/01/Q8

9 (i) Given that $y = e^{\sqrt{1+2x}}$, show that

$$\left(\ln y\right)\frac{\mathrm{d}y}{\mathrm{d}x} = y\,.$$
[1]

By further differentiation of this expression, find the series expansion for y, up to and including the term in x^3 , giving all coefficients in exact form. [3]

(ii) Find the series expansion for $\sqrt{1+2x}$, up to and including the term in x^3 . [1] By using the Maclaurin expansion for e^x found in the List of Formulae (MF26) and the expansion for $\sqrt{1+2x}$, verify your answer in (i). [2]

9(i)	$y = e^{\sqrt{1+2x}} \implies \ln y = \sqrt{1+2x}$
[4]	differentiating w.r.t. x,
	$\frac{1}{v}\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{1+2x}}$
	$\frac{1}{y} \frac{dx}{dx} - \frac{1}{\sqrt{1+2x}}$
	_ 1
	$=\frac{1}{\ln y}$
	Hence $(\ln y)\frac{dy}{dx} = y$ (shown).
	Differentiating w.r.t. x,
	$\left(\frac{1}{y}\frac{\mathrm{d}y}{\mathrm{d}x}\right)\frac{\mathrm{d}y}{\mathrm{d}x} + (\ln y)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}y}{\mathrm{d}x} \Rightarrow \frac{1}{y}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + (\ln y)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}y}{\mathrm{d}x}.$
	Differentiating w.r.t. x,
	$\left(-\frac{1}{y^2}\frac{\mathrm{d}y}{\mathrm{d}x}\right)\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + \frac{1}{y}\left(2\frac{\mathrm{d}y}{\mathrm{d}x}\frac{\mathrm{d}^2y}{\mathrm{d}x^2}\right) + \left(\frac{1}{y}\frac{\mathrm{d}y}{\mathrm{d}x}\right)\frac{\mathrm{d}^2y}{\mathrm{d}x^2} + \left(\ln y\right)\frac{\mathrm{d}^3y}{\mathrm{d}x^3} = \frac{\mathrm{d}^2y}{\mathrm{d}x^2}.$
	When $x = 0$, $y = e$, $\frac{dy}{dx} = e$, $\frac{d^2y}{dx^2} = 0$, and $\frac{d^3y}{dx^3} = e$.
	Hence by Maclaurin expansion,
	$y \approx e + ex + \frac{e}{3!}x^3 = e + ex + \frac{e}{6}x^3.$
(ii)	$\sqrt{1+2x} = (1+2x)^{\frac{1}{2}}$
[3]	
	$=1+\frac{1}{2}(2x)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2}(2x)^{2}+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!}(2x)^{3}+\dots$
	$\approx 1 + x - \frac{1}{2}x^2 + \frac{1}{2}x^3.$
	Hence
	$e^{\sqrt{1+2x}}$

$$\approx e^{\left(1+x-\frac{1}{2}x^{2}+\frac{1}{2}x^{3}\right)}$$

$$= e \cdot e^{\left(x-\frac{1}{2}x^{2}+\frac{1}{2}x^{3}\right)}$$

$$\approx e^{\left[1+\left(x-\frac{1}{2}x^{2}+\frac{1}{2}x^{3}\right)+\frac{\left(x-\frac{1}{2}x^{2}+\frac{1}{2}x^{3}\right)^{2}}{2!}+\frac{\left(x-\frac{1}{2}x^{2}+\frac{1}{2}x^{3}\right)^{3}}{3!}\right]}$$

$$\approx e^{\left[1+x-\frac{1}{2}x^{2}+\frac{1}{2}x^{3}+\frac{1}{2}x^{2}-\frac{1}{4}x^{3}-\frac{1}{4}x^{3}+\frac{1}{6}x^{3}\right]}$$

$$= e^{\left(1+x+\frac{1}{6}x^{3}\right)} = e + ex + \frac{e}{6}x^{3} \quad (verified).$$

Source of Question: VJC/Promo/2018/01/Q5

10 It is given that $y = -\sec 2x$.

(i) Show that
$$\frac{d^2 y}{dx^2} = -4$$
 when $x = 0$. [3]

(ii) Find the first two non-zero terms in the Maclaurin series for y. [2]

It is given further that the first two non-zero terms in the series expansion of y are equal to the first two non-zero terms in the series expansion of $(a+bx^2)^{\frac{1}{3}}$ where a and b are constants. Find the values of a and b. [3]

Solution:

 $\begin{array}{ll} \mathbf{10(i)} \\ [3] & \frac{dy}{dx} = -2\sec 2x \tan 2x \\ & \frac{d^2 y}{dx^2} = -2\left\{\sec 2x \left(2\sec^2 2x\right) + \tan 2x \left(2\sec 2x \tan 2x\right)\right\} \\ & = -4\sec 2x \left(\sec^2 2x + \tan^2 2x\right) \\ & \text{When } x = 0, \ \tan 2x = 0, \ \sec 2x = 1 \\ & \therefore \frac{d^2 y}{dx^2} = -4(1+0) = -4 \end{array}$ $\begin{array}{ll} (\mathbf{ii)} \\ [2] & \text{At } x = 0, \ y = -1, \ \frac{dy}{dx} = 0 \ \text{and} \ \frac{d^2 y}{dx^2} = -4 \\ & \text{First two non-zero terms in the Maclarin's series for } y \text{ is} \\ & y = -1 + 0(x) + \frac{-4}{2!}x^2 + \dots \\ & y = -1 - 2x^2 + \dots \end{array}$

(iii)
[3]

$$(a + bx^{2})^{\frac{1}{3}}$$

$$= a^{\frac{1}{3}}(1 + \frac{b}{a}x^{2})^{\frac{1}{3}}$$

$$= a^{\frac{1}{3}}(1 + \frac{bx^{2}}{3a}) + \dots$$
Since the first two non-zero terms are equal
 $a = -1,$
 $\frac{bx^{2}}{3} = -2x^{2}, b = -6$
 $\therefore a = -1, b = -6$

Source of Question: MI/Promo/2018/02/Q6

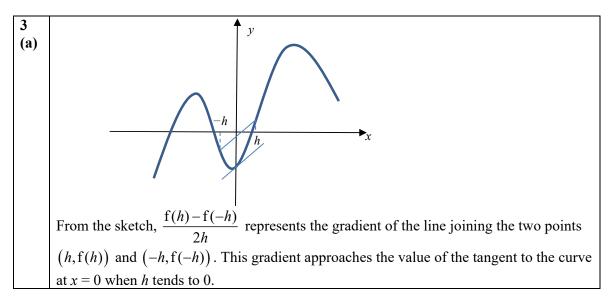
11 It is given that $f(x) = \cos^4 x + \sin x$, where $x \ge 0$.

(i) Given that x is a sufficiently small angle, show that

$$\mathbf{f}(x) \approx 1 + ax + bx^2,$$

for constants a and b to be determined.

[4]


- (ii) Joel uses the answer to part (i) to give an approximation for $\int_0^{\frac{\pi}{3}} f(x) dx$. Explain why the approximation is not very good. [1]
- (iii) Suggest a method to improve the approximation in part (ii). [1]

^			
No.	11111	nn	٠
Sol	uu	VII	

11(i)	$f(x) = \cos^4 x + \sin x$
[4]	$\approx \left(1 - \frac{x^2}{2}\right)^4 + x$
	$=1+4\left(-\frac{x^2}{2}\right)+x+$
	$\approx 1 + x - 2x^2$
	Therefore, $a = 1, b = -2$.
(ii)	The approximation is not very good because this is only valid for small values of x .
[1]	$x = \frac{\pi}{3}$ is not small.
	OR
	The approximation is not very good because the approximation for the integrand $f(x)$
	consists of only a few terms.

(iii)	One can increase the number of terms for the approximation for $f(x)$ to make the
[1]	integral approximation better for larger values of x.

- 12 Let f be a continuous and differentiable function.
 - (a) Explain with the aid of a sketch, why $f'(0) = \lim_{h \to 0} S(h)$, where $S(h) = \frac{f(h) f(-h)}{2h}$. [2]
 - (b) A student proposes to find f'(0) using the function $T(h) = \frac{f(-2h) - 8f(-h) + 8f(h) - f(2h)}{kh}$, where k is a constant.
 - (i) Assuming that the Maclaurin series of f exists, write down the Maclaurin series of f(h) and f(2h) up to and including the term in h^5 . [2]
 - (ii) Hence or otherwise, determine k such that $f'(0) = \lim_{h \to 0} T(h)$. [3]
 - (c) Let $f(x) = \sin x$. Determine the largest *m* such that
 - (i) S(h) differs from f'(0) by at most 10^{-3} for $|h| \le m$. [2]
 - (ii) T(h) differs from f'(0) by at most 10^{-3} for $|h| \le m$. [2]
 - (iii) Comment on the values found above in parts (c)(i) and (c)(ii). [1]

(b) (i)	$f(h) = f(0) + hf'(0) + \frac{h^2}{2}f''(0) + \frac{h^3}{6}f'''(0) + \frac{h^4}{24}f^{(4)}(0) + \frac{h^5}{120}f^{(5)}(0) + \dots$
	$f(2h) = f(0) + 2hf'(0) + 2h^2 f''(0) + \frac{4h^3}{3}f'''(0) + \frac{2h^4}{3}f^{(4)}(0) + \frac{4h^5}{15}f^{(5)}(0) + \dots$
(ii)	Therefore,
	$T(h) = \frac{f(-2h) - 8f(-h) + 8f(h) - f(2h)}{kh}$
	$\left(f(0) - 2hf'(0) + 2h^2 f''(0) - \frac{4h^3}{3}f'''(0) + \frac{2h^4}{3}f^{(4)}(0) - \frac{4h^5}{15}f^{(5)}(0) + \dots\right)$
	$= \frac{1}{kh} \begin{vmatrix} -8f(0) + 8hf'(0) - 4h^2f''(0) + \frac{4h^3}{3}f'''(0) - \frac{h^4}{3}f^{(4)}(0) + \frac{h^5}{15}f^{(5)}(0) + \dots \\ +8f(0) + 8hf'(0) + 4h^2f''(0) + \frac{4h^3}{3}f'''(0) + \frac{h^4}{3}f^{(4)}(0) + \frac{h^5}{15}f^{(5)}(0) + \dots \end{vmatrix}$
	$\left(-f(0) - 2hf'(0) - 2h^2 f''(0) - \frac{4h^3}{3}f'''(0) - \frac{2h^4}{3}f^{(4)}(0) - \frac{4h^5}{15}f^{(5)}(0) + \dots\right)$
	$=\frac{1}{kh}\left(12hf'(0)-\frac{2h^5}{5}f^{(5)}(0)+\right)$
	$=\frac{12}{k}f'(0)-\frac{2}{5k}h^4f^{(5)}(0)+$
	Hence for $f'(0) = \lim_{h \to 0} T(h)$, we need $k = 12$.
(c)	f'(0) = 1.
(i)	Solving the inequality
	$\left \frac{f(h) - f(-h)}{2h} - 1\right \le 10^{-3}$
	$\begin{vmatrix} 2h \end{vmatrix}$
	$\Rightarrow \left \frac{\sin h}{h} - 1\right \le 10^{-3}$
	From GC, $-0.0774 \le h \le 0.0774$ (accept 0.0775)
	Thus largest <i>m</i> is 0.0774
(ii)	$\left \frac{16\sin h - 2\sin 2h}{12h} - 1\right \le 10^{-3}$
	From GC, $-0.418 \le h \le 0.418$
	Thus largest <i>m</i> is 0.418
(iii)	This shows that to approximate the derivative of $\sin x$ at 0 to an accuracy of 0.001, the
	second method does not require such a small h compared to the first method.