

Q1 Solution

Q2 Solution

Let the polynomial be $y = ax^3 + bx^2 + cx + d$
$\frac{\mathrm{d}y}{\mathrm{d}x} = 3ax^2 + 2bx + c$
At $(1, -13)$,
a+b+c+d = -13 (1)
3a+2b+c=0 (2)
At $(-1,7)$,
-a+b-c+d=7 (3)
3a - 2b + c = -12 - (4)
Solving (1), (2), (3) and (4),
a=2, b=3, c=-12, d=-6

Hence the polynomial is $2x^3 + 3x^2 - 12x - 6$ Q3 Solution

(a) (i)	$\frac{d}{dx}\ln\left(\frac{e^{2x}}{x+2}\right) = \frac{d}{dx}\left(\ln\left(e^{2x}\right) - \ln(x+2)\right) = \frac{d}{dx}\left(2x - \ln(x+2)\right) = 2 - \frac{1}{x+2}$
	<u>Alternative Method (Quotient rule)</u>
	$\frac{\mathrm{d}}{\mathrm{d}x}\ln\left(\frac{e^{2x}}{x+2}\right)$
	$= \frac{x+2}{e^{2x}} \times \left(\frac{(x+2)2e^{2x} - e^{2x}}{(x+2)^2} \right)$
	$=2-\frac{1}{x+2}$
(a) (ii)	$\frac{d}{dx}\left(1+\frac{2}{x}\right)^{n} = n\left(1+\frac{2}{x}\right)^{n-1}\left(-\frac{2}{x^{2}}\right) = -\frac{2n}{x^{2}}\left(1+\frac{2}{x}\right)^{n-1}$
(b)	$\frac{1}{\sqrt{x} - \sqrt{x - 2}} = \frac{1}{\sqrt{x} - \sqrt{x - 2}} \times \frac{\sqrt{x} + \sqrt{x - 2}}{\sqrt{x} + \sqrt{x - 2}} = \frac{\sqrt{x} + \sqrt{x - 2}}{\left(\sqrt{x}\right)^2 - \left(\sqrt{x - 2}\right)^2} = \frac{\sqrt{x} + \sqrt{x - 2}}{2}$
	$\int \frac{1}{\sqrt{x} - \sqrt{x - 2}} dx = \frac{1}{2} \int \sqrt{x} + \sqrt{x - 2} dx$
	$= \frac{1}{2} \left[\frac{x^{\frac{3}{2}}}{\left(\frac{3}{2}\right)} + \frac{\left(x-2\right)^{\frac{3}{2}}}{\left(\frac{3}{2}\right)^{\frac{3}{2}}} \right] + C \text{, where } C \text{ is an arbitrary constant}$
	$=\frac{1}{3}\left[x^{\frac{3}{2}} + (x-2)^{\frac{3}{2}}\right] + C$

Q4 <u>Solution</u>

-	
(i)	$y = \ln\left(2x - 4\right) - 2\sqrt{x} + 6$
	$\frac{dy}{dt} = \frac{2}{-2(1-1)x^{-\frac{1}{2}}}$
	$dx 2x-4 (2)^{x}$
	$=\frac{1}{2}-\frac{1}{\sqrt{2}}$
	$x-2$ \sqrt{x}
	For stationary points, set $\frac{dy}{dx} = 0$
	So, $\frac{1}{x-2} - \frac{1}{\sqrt{x}} = 0$
	$\frac{1}{x-2} = \frac{1}{\sqrt{x}}$
	$\sqrt{x} = x - 2$
	Method 1
	Squaring both sides,
	$\left(\sqrt{x}\right)^2 = \left(x-2\right)^2$
	$x = x^2 - 4x + 4$
	$x^2 - 5x + 4 = 0$
	(x-1)(x-4)=0
	x = 1 or $x = 4$
	Since $x > 2$, so $x = 4$
	$\frac{Method 2}{\sqrt{x-x+2}=0}$
	Let $y = \sqrt{x}$, then $y - y^2 + 2 = 0$
	$y^2 - y - 2 = 0$
	(y+1)(y-2)=0
	So, $y = \sqrt{x} = 2$ or $y = \sqrt{x} = -1$ (no solution)
	Hence $x = 4$
	$\frac{1}{x-2} - \frac{1}{\sqrt{x}} = 0$
	1 1
	$\frac{1}{x-2} = \frac{1}{\sqrt{x}}$
	When $x = 4$, $y = \ln(2 \times 4 - 4) - 2\sqrt{x + 6} = \ln 4 - 4 + 6 = 2 + \ln 4$
	So turning point is $(4, 2 + \ln 4)$

Q5 Solution

	Since N is in hundreds,
	So, <i>N</i> = 481
	$481 = 500 - 140e^{k(5)}$
	$e^{k(5)} - \frac{19}{19}$
	140
	1, (19)
	$k = \frac{1}{5} \ln \left(\frac{1}{140} \right)$
	k = -0.399 = -0.4 (1 d.p.)
(ii)	dN out
	$\frac{dt}{dt} = 56e^{-0.4t}$
	$\frac{dV}{dt}$ represents the rate of change of recorded influenza cases with respect to time.
	dt
	Or
	$\frac{dN}{dN}$ represents the rate of increase of recorded influenza cases with respect to time.
	dt
	Or
	$\frac{dN}{dN}$ implies that for every increase of 1 day, the number of recorded influenza cases
	$\frac{dt}{dt}$
	increase by $56e^{-0.4}$ hundreds.
(iii)	
	17
	N
	N = 500
	N = 500
	N = 500
	(0, 360) $N = 500 - 140e^{kt}$
	(0, 360) $N = 500 - 140e^{kt}$
	$N = 500$ (0, 360) $N = 500 - 140e^{kt}$
	$N = 500$ $N = 500 - 140e^{kt}$ t
	$N = 500$ $N = 500 - 140e^{kt}$ t
	$N = 500$ $N = 500 - 140e^{kt}$ t
(iv)	$N = 500$ $N = 500 - 140e^{kt}$
(iv)	N = 500 (0, 360) N = 500 - 140e ^{kt} O As t becomes large, $e^{-0.4t} \rightarrow 0$, $N \rightarrow 500$ So, number of recorded influenza cases will tend to 50 000.
(iv)	N = 500 (0, 360) N = 500 - 140e ^{kt} N = 500 - 140e ^{kt} As t becomes large, $e^{-0.4t} \rightarrow 0$, $N \rightarrow 500$ So, number of recorded influenza cases will tend to 50 000.
(iv)	N = 500 (0, 360) N = 500 - 140e ^{kt} N = 500 - 140e ^{kt} t As t becomes large, $e^{-0.4t} \rightarrow 0$, $N \rightarrow 500$ So, number of recorded influenza cases will tend to 50 000. No, it is not realistic as it is not possible to have the number of cases stay at a constant as sick people
(iv)	N = 500 (0, 360) N = 500 - 140e ^{kt} N = 500 - 140e ^{kt}
(iv)	N = 500 (0, 360) N = 500 - 140e ^{kt} N = 500 - 140e ^{kt} N = 500 - 140e ^{kt} t As t becomes large, $e^{-0.4t} \rightarrow 0$, $N \rightarrow 500$ So, number of recorded influenza cases will tend to 50 000. No, it is not realistic as it is not possible to have the number of cases stay at a constant as sick people should get well eventually. (or any other reasonable reason.)
(iv)	$N = 500$ (0, 360) $N = 500 - 140e^{kt}$ O As t becomes large, $e^{-0.4t} \rightarrow 0$, $N \rightarrow 500$ So, number of recorded influenza cases will tend to 50 000. No, it is not realistic as it is not possible to have the number of cases stay at a constant as sick people should get well eventually. (or any other reasonable reason.)
(iv)	$N = 500$ (0, 360) $N = 500 - 140e^{kt}$ O As t becomes large, $e^{-0.4t} \rightarrow 0$, $N \rightarrow 500$ So, number of recorded influenza cases will tend to 50 000. No, it is not realistic as it is not possible to have the number of cases stay at a constant as sick people should get well eventually. (or any other reasonable reason.)
(iv)	$N = 500$ (0, 360) $N = 500 - 140e^{kt}$ $N = 500 - 140e^{kt}$ As t becomes large, $e^{-0.4t} \rightarrow 0$, $N \rightarrow 500$ So, number of recorded influenza cases will tend to 50 000. No, it is not realistic as it is not possible to have the number of cases stay at a constant as sick people should get well eventually. (or any other reasonable reason.)
(iv)	N = 500 (0, 360) N = 500 - 140e ^{kt} N = 500 - 140e ^{kt} As t becomes large, $e^{-0.4t} \rightarrow 0$, $N \rightarrow 500$ So, number of recorded influenza cases will tend to 50 000. No, it is not realistic as it is not possible to have the number of cases stay at a constant as sick people should get well eventually. (or any other reasonable reason.)

Q6 <u>Solution</u>

(i)	Consider AB as or	ne group.	
	Number of ways		
	=7!×2!		
	Arrange 7	Adam and Bernice	
	objects	can swap places	
	=10080		
(ii)	AJSJSJSJ of	r JSJSJSJA	
	Number of ways		
	$=(4! \times 3!) \times 2$	<u> </u>	
	Arrange 4	Arrange remaining	Adam can be on the
	Juniors	3 Seniors	left or right of row.
	- 288		
	- 200		
(iii)	nbr	of ways to select 1 Junio	or and 4 Seniors
	Probability =	nbr of ways to select 5	5 members
	$^{4}C_{1}$	$\times {}^{4}C_{4}$	
	$=\frac{1}{8}$	$\overline{C_{\epsilon}}^{4}$	
	1	- 5	
	$=\frac{1}{14}$		
	Alternative Metho	d	
	4	4 3 2 1 1	
	Probability = $-\times$ 8	$- \times - \times - \times - \times 5 = 7 6 5 4 14$	

Q7 Solution

(ii)	Let <i>Y</i> be the random variable denoting number of passengers rejected
	by the iris scanner out of 100 passengers.
	Then $Y \sim B(100, 0.07)$
	P(plane departs on time)
	= P(Y < 13)
	$= P(Y \le 12) = 0.9775924796 \approx 0.978 \text{ (to 3 s.f.)}$
(iii)	Let W be the random variable denoting number of planes delayed out
	of /5 planes. Then $W = D(75 D(X > 12))$
	Then $W \sim B(75, P(Y \ge 13))$
	$W \sim B(75, 1-0.9775924796)$
	$W \sim B(75, 0.0224075204)$
	P(more than 5 planes delayed) = $P(W > 5) = 1 - P(W \le 5)$
	$= 0.0068237351 \approx 0.00682$ (to 3 s.f.)
(iv)	$W \sim B(75, 0.0224075204)$
	NORMAL FLOAT AUTO REAL RADIAN MP
	DISTR DRAW Dinompdf 91Fpdf(trials:75
	0:Fcdf(p:0.0224075204 Dbinompdf(x value:X
	C:invBinom(D:poissonpdf(
	E:Poissoncdf(F:geometpdf(
	■ Y1 ■ Dinompdf(75,0.0224075)
	Y 3 = Y 0.0613 Y 4 = 5 0.02 V c = 6 0.0653
	Y 5 = 7 0.0012 Y 7 = 8 2.3E ⁴ Y 7 = 9 4E ⁵
	10 6.12°6 XY9=
	P(W = W)
	0 0.1827
	1 0.3141
	$ \underline{ 2 } 0.2004 $ Hence the most likely number of planes delayed is 1
	Thence the most fixery number of planes delayed is 1.

Q8 <u>Solution</u>

(•)	
(i)	A
	$(A \cup B')$
	$(A \cup B)$
	$\frac{Memod I}{P(A \cup B')} = 1 - P(B) + P(A \cap B)$
	$1 - P(B) + P(A \cap B) = \frac{13}{20}$
	$1 - \left(a + \frac{11}{40}\right) + \frac{1}{20} = \frac{13}{20}$
	$1 - \frac{13}{20} + \frac{1}{20} = a + \frac{11}{40}$
	$a = 1 - \frac{12}{20} - \frac{11}{40} = \frac{1}{8}$
	Method 2
	$\mathbf{P}(B) = [1 - \mathbf{P}(A \cup B')] + \mathbf{P}(A \cap B)$
	$a + \frac{11}{40} = \left[1 - \frac{13}{20}\right] + \frac{1}{20}$
	$a = \frac{1}{8}$
	Method 3
	$\mathbf{P}(A \cup B') = \mathbf{P}(A) + \mathbf{P}(B') - \mathbf{P}(A \cap B')$
	$= \mathbf{P}(A) + \mathbf{P}(B') - \left[\mathbf{P}(A) - \mathbf{P}(A \cap B)\right]$
	$\frac{13}{20} = a + \left[1 - \left(a + \frac{11}{40}\right)\right] - \left[a - \frac{1}{20}\right]$
	$\frac{13}{20} = \frac{29}{40} + \frac{1}{20} - a$
	$a = \frac{31}{40} - \frac{13}{20} = \frac{5}{40} = \frac{1}{8}$
(ii)	
	A
	$(A' \cap B)$
	$P(A' \cap B)$ is the probability of <u>only</u> event B occurring.
	or the probability of only event B occurring and event A not
	occurring.

	$P(A' \cap B) = P(B) - P(A \cap B)$
	$=a+\frac{11}{40}-\frac{1}{20}$
	$=\frac{1}{8}+\frac{9}{40}$
	$=\frac{14}{40}=\frac{7}{20}$
(iii)	$P(A \cap B) = \frac{1}{20}$
	$P(A) \times P(B) = \frac{1}{8} \times \left(\frac{1}{8} + \frac{11}{40}\right) = \frac{1}{8} \times \frac{2}{5} = \frac{1}{20}$
	Yes, A and B are independent.
	Since <i>A</i> and <i>B</i> are independent, then <i>A</i> ' and <i>B</i> are also independent.
	So $P(A' B) = P(A') = \frac{7}{8}$
	[Check: $P(A' B) = \frac{P(A' \cap B)}{P(B)} = \frac{\frac{7}{20}}{\frac{2}{5}} = \frac{7}{8} = P(A')$]

Q9 Solution

(i)	
	0.65 pass
	0.7 pass
	0.35
	lan
	0.3
	` tail
(ii)	P(did not qualify) = P(did not pass first song and did not pass second song)
	$= 0.35 \times 0.3$
	$-\frac{21}{2}$ or ≈ 0.105
	200
(111)	P(sing twice qualify)
	$= \frac{P(\text{sing twice and qualify})}{P(\text{sing twice and qualify})}$
	P(qualify)
	$-\frac{P(1st \text{ song did not pass followed by 2nd song passed})}{P(1st song did not pass followed by 2nd song passed)}$
	1 - P(did not qualify)
	$=\frac{0.35\times0.7}{0.35\times0.7}$
	1-0.105
	$=\frac{49}{170}$ or ≈ 0.274 (3 s.f.)
	179
	Alternative Method
	P(sing twice qualify)
	$= \frac{P(\text{sing twice and qualify})}{P(\text{sing twice and qualify})}$
	P(qualify)
	$= \frac{P(1 \text{st song did not pass followed by 2nd song passed})}{P(1 \text{st song did not pass followed by 2nd song passed})}$
	0.35×0.7
	$=\frac{0.050000}{0.65+0.35\times0.7}$
	$\frac{49}{2}$ or ≈ 0.274 (3 s f)
	$=\frac{1}{179}$ or ≈ 0.274 (38.1.)
(iv)	Probability
	$= P(qualify after 2nd song) \times \lfloor P(did not qualify) \rfloor^{2} \times 3$
	$=(0.35 \times 0.7) \times (0.105)^2 \times 3$
	= 0.00810 (3s.f.)

Q10 <u>Solution</u>

(i)	Unbiased estimate of population mean $\overline{x} = \sum (x-5) + 5$
	Constance of population mean, $x = \frac{120}{120}$
	$=\frac{54}{120}+5$
	=5.45 (exact value)
	Unbiased estimate of population variance,
	$s^{2} = \frac{1}{120 - 1} \left[\sum (x - 5)^{2} - \frac{\left[\sum (x - 5) \right]^{2}}{120} \right]$
	$=\frac{1}{120-1}\left[162-\frac{54^2}{120}\right]$
	$=\frac{81}{2}$
	70
	$\approx 1.16 (3 \text{ s.f.})$
(ii)	$H_0: \mu = 5.65$
	$H_1: \mu \neq 5.65$
	Under H_0 , since $n = 120$ is sufficiently large, by Central Limit Theorem,
	$\overline{X} \sim N\left(5.65, \frac{1.1571}{120}\right)$ approximately
	Test statistics, $z = \frac{\overline{x} - \mu_0}{\sqrt{\frac{s^2}{s^2}}} = \frac{5.45 - 5.65}{\sqrt{\frac{1.1571}{s^2}}} = -2.0367$
	$\bigvee_{n} \bigvee_{120}$
	Using GC, p-value = $0.0416/6$ (5 s.f.) = $0.041/(3 s.f.)$ Or
	test statistics $z = -2.0367 < \text{critical value } z = -1.95996$
	Since p-value = $0.0417 < 0.05$, we reject H ₀ . Hence, we conclude at 5% significance level that there is sufficient evidence
	that the mean time spent by students participating in sports activities is not 5.65 hours.
	The p-value of 0.0417 means the probability of obtaining a sample mean at least as extreme as the given sample of 120 students whose mean time participating in sports activities is 5.45 hours, assuming that the population mean time is 5.65 hours, is 0.0417.
(iii)	$H_0: \mu = 5.65$
	$H_1: \mu < 5.65$
	Under H_0 , since $n = 100$ is sufficiently large, by Central Limit Theorem,
	$\overline{X} \sim N\left(5.65, \frac{1.1571}{100}\right)$ approximately
	Test statistics, $z = \frac{\overline{x} - \mu_0}{\sqrt{\frac{s^2}{n}}} = \frac{\overline{x} - 5.65}{\sqrt{\frac{1.1571}{100}}}$

Teachers' claim not justified $\Rightarrow \text{ do not reject H}_0 \text{ at } 2\% \text{ sig. level} \qquad (ejection)$ $\Rightarrow \text{ test statistic} > -2.0537 \qquad (ejection) \qquad (eje$
$\frac{Alternative Method (no need to standardize)}{\overline{x} > \text{invNorm}} \left(0.02, 5.65, \sqrt{\frac{1.1571}{100}} \right)$ $\Rightarrow \overline{x} > 5.4291$

Q11 Solution

Q12 Solution

(1)	Let X be the random variable denoting mass of one packet of
	cement in kg.
	Then $X \sim N(\mu, \sigma^2)$
	P(X > 49.8) = 0.6
	$P\left(Z > \frac{49.8 - \mu}{\sigma}\right) = 0.6$
	$Z \sim N(0,1)$
	$\frac{49.8 - \mu}{\sigma} = -0.2533471011$
	$\mu - 0.2533471011\sigma = 49.8 (1)$
	P(X < 49.1) = 0.15
	$P\left(Z < \frac{49.1 - \mu}{\sigma}\right) = 0.15$
	$\frac{49.1-\mu}{\mu} = -1.03643338$
	σ (2)
	$\mu = 1.050455580 = 49.1 = (2)$ Using GC solving (1) and (2)
	$\mu = 50.026 = 50.0$
	$\sigma = 0.89390 = 0.894$
(ii)	Let <i>Y</i> be the random variable denoting mass of one brick in kg.
(ii)	Let <i>Y</i> be the random variable denoting mass of one brick in kg. Then $Y \sim N(3.88, 0.1^2)$
(ii)	Let <i>Y</i> be the random variable denoting mass of one brick in kg. Then $Y \sim N(3.88, 0.1^2)$ P(Y > 4.07) = 0.0287
(ii) (iii)	Let <i>Y</i> be the random variable denoting mass of one brick in kg. Then <i>Y</i> ~N(3.88, 0.1 ²) P(Y > 4.07) = 0.0287 $Y_1 + Y_2 + \dots + Y_{12} \sim N(12 \times 3.88, 12 \times 0.1^2)$
(ii) (iii)	Let Y be the random variable denoting mass of one brick in kg. Then $Y \sim N(3.88, 0.1^2)$ P(Y > 4.07) = 0.0287 $Y_1 + Y_2 + + Y_{12} \sim N(12 \times 3.88, 12 \times 0.1^2)$ $P(3.85(12) < Y_1 + Y_2 + + Y_{12} < 3.92(12)) = 0.768 (3 \text{ sf})$
(ii) (iii)	Let <i>Y</i> be the random variable denoting mass of one brick in kg. Then <i>Y</i> ~N(3.88, 0.1 ²) P(Y > 4.07) = 0.0287 $Y_1 + Y_2 + + Y_{12} \sim N(12 \times 3.88, 12 \times 0.1^2)$ $P(3.85(12) < Y_1 + Y_2 + + Y_{12} < 3.92(12)) = 0.768 (3 \text{ sf})$ <u>Alternative method</u>
(ii) (iii)	Let <i>Y</i> be the random variable denoting mass of one brick in kg. Then <i>Y</i> ~N(3.88, 0.1 ²) P(Y > 4.07) = 0.0287 $Y_1 + Y_2 + + Y_{12} \sim N(12 \times 3.88, 12 \times 0.1^2)$ $P(3.85(12) < Y_1 + Y_2 + + Y_{12} < 3.92(12)) = 0.768 (3 \text{ sf})$ <u>Alternative method</u> Since <i>Y</i> is normally distributed, $\overline{Y} \sim N\left(3.88, \frac{0.1^2}{12}\right)$
(ii) (iii)	Let <i>Y</i> be the random variable denoting mass of one brick in kg. Then <i>Y</i> ~N(3.88, 0.1 ²) P(<i>Y</i> > 4.07) = 0.0287 $Y_1 + Y_2 + + Y_{12} \sim N(12 \times 3.88, 12 \times 0.1^2)$ P(3.85(12) < $Y_1 + Y_2 + + Y_{12} < 3.92(12)$) = 0.768 (3 sf) <u>Alternative method</u> Since <i>Y</i> is normally distributed, $\overline{Y} \sim N(3.88, \frac{0.1^2}{12})$ P(3.85 < \overline{Y} < 3.92) = 0.768
(ii) (iii) (iv)	Let Y be the random variable denoting mass of one brick in kg. Then $Y \sim N(3.88, 0.1^2)$ P(Y > 4.07) = 0.0287 $Y_1 + Y_2 + + Y_{12} \sim N(12 \times 3.88, 12 \times 0.1^2)$ $P(3.85(12) < Y_1 + Y_2 + + Y_{12} < 3.92(12)) = 0.768 (3 \text{ sf})$ <u>Alternative method</u> Since Y is normally distributed, $\overline{Y} \sim N(3.88, \frac{0.1^2}{12})$ $P(3.85 < \overline{Y} < 3.92) = 0.768$ $1.15Y \sim N(1.15 \times 3.88, 1.15^2 \times 0.1^2)$
(ii) (iii) (iv)	Let Y be the random variable denoting mass of one brick in kg. Then $Y \sim N(3.88, 0.1^2)$ P(Y > 4.07) = 0.0287 $Y_1 + Y_2 + + Y_{12} \sim N(12 \times 3.88, 12 \times 0.1^2)$ $P(3.85(12) < Y_1 + Y_2 + + Y_{12} < 3.92(12)) = 0.768 (3 \text{ sf})$ <u>Alternative method</u> Since Y is normally distributed, $\overline{Y} \sim N\left(3.88, \frac{0.1^2}{12}\right)$ $P(3.85 < \overline{Y} < 3.92) = 0.768$ $1.15Y \sim N(1.15 \times 3.88, 1.15^2 \times 0.1^2)$ $1.15Y \sim N(4.462, 132.25)$
(ii) (iii) (iv)	Let Y be the random variable denoting mass of one brick in kg. Then $Y \sim N(3.88, 0.1^2)$ P(Y > 4.07) = 0.0287 $Y_1 + Y_2 + + Y_{12} \sim N(12 \times 3.88, 12 \times 0.1^2)$ $P(3.85(12) < Y_1 + Y_2 + + Y_{12} < 3.92(12)) = 0.768 (3 \text{ sf})$ <u>Alternative method</u> Since Y is normally distributed, $\overline{Y} \sim N\left(3.88, \frac{0.1^2}{12}\right)$ $P(3.85 < \overline{Y} < 3.92) = 0.768$ $1.15Y \sim N(1.15 \times 3.88, 1.15^2 \times 0.1^2)$ $1.15Y \sim N(4.462, 132.25)$ P(1.15Y < 4.22) = 0.0177
(ii) (iii) (iv)	Let Y be the random variable denoting mass of one brick in kg. Then $Y \sim N(3.88, 0.1^2)$ P(Y > 4.07) = 0.0287 $Y_1 + Y_2 + + Y_{12} \sim N(12 \times 3.88, 12 \times 0.1^2)$ $P(3.85(12) < Y_1 + Y_2 + + Y_{12} < 3.92(12)) = 0.768 (3 \text{ sf})$ <u>Alternative method</u> Since Y is normally distributed, $\overline{Y} \sim N\left(3.88, \frac{0.1^2}{12}\right)$ $P(3.85 < \overline{Y} < 3.92) = 0.768$ $1.15Y \sim N(1.15 \times 3.88, 1.15^2 \times 0.1^2)$ $1.15Y \sim N(4.462, 132.25)$ P(1.15Y < 4.22) = 0.0177 <u>Alternative method</u>
(ii) (iii) (iv)	Let Y be the random variable denoting mass of one brick in kg. Then $Y \sim N(3.88, 0.1^2)$ P(Y > 4.07) = 0.0287 $Y_1 + Y_2 + + Y_{12} \sim N(12 \times 3.88, 12 \times 0.1^2)$ $P(3.85(12) < Y_1 + Y_2 + + Y_{12} < 3.92(12)) = 0.768 (3 \text{ sf})$ <u>Alternative method</u> Since Y is normally distributed, $\overline{Y} \sim N\left(3.88, \frac{0.1^2}{12}\right)$ $P(3.85 < \overline{Y} < 3.92) = 0.768$ $1.15Y \sim N(1.15 \times 3.88, 1.15^2 \times 0.1^2)$ $1.15Y \sim N(4.462, 132.25)$ P(1.15Y < 4.22) = 0.0177 <u>Alternative method</u> Using $Y \sim N(3.88, 0.1^2)$

(v)	Let $F = X_1 + X_2 + 1.15Y_1 + 1.15Y_2 + \dots + 1.15Y_{25}$
	$F \sim N(2(50.0) + 25(4.462), 2(0.894^2) + 25(132.25))$
	$F \sim N(211.602, 1.9291)$
	P(F > m) = 0.8
	m = 210.4 (1 dp)
(vi)	Assumption is that mass of bricks and packets of cement are independent normal distributions.