2021 SNGS Prelim MARKING SCHEME

PAPER 1

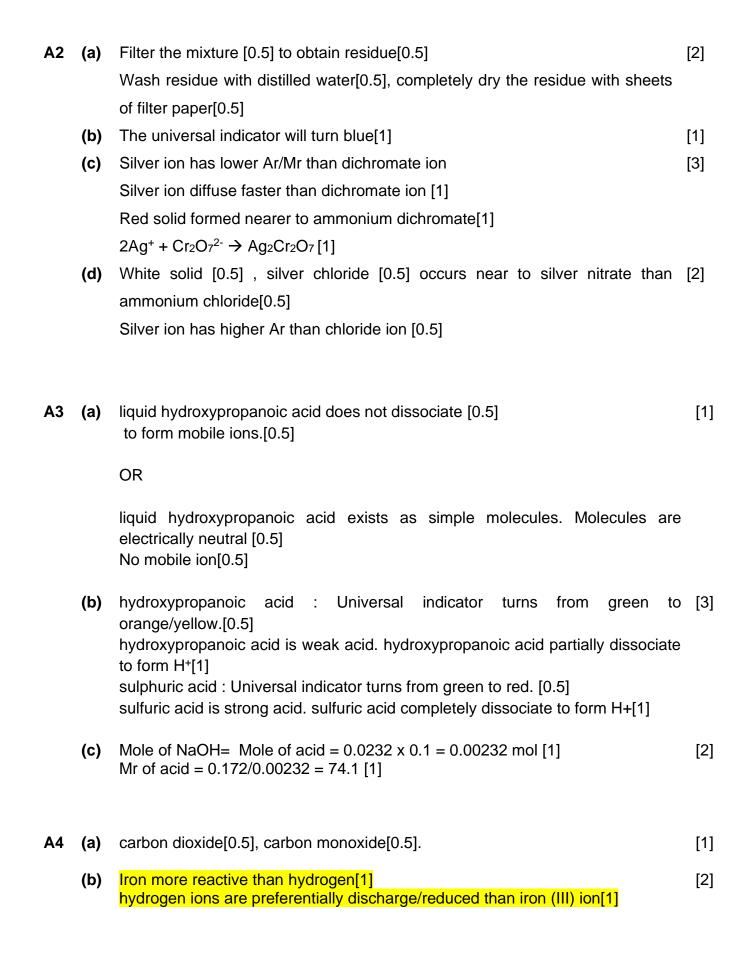
1	В	11	D	21	А	31	С
2	D	12	D	22	В	32	С
3	В	13	D	23	D	33	D
4	В	14	D	24	С	34	Α
5	С	15	Α	25	С	35	D
6	D	16	Α	26	С	36	С
7	С	17	В	27	Α	37	В
8	Α	18	В	28	С	38	А
9	В	19	В	29	С	39	В
10	С	20	В	30	В	40	С

PAPER 2

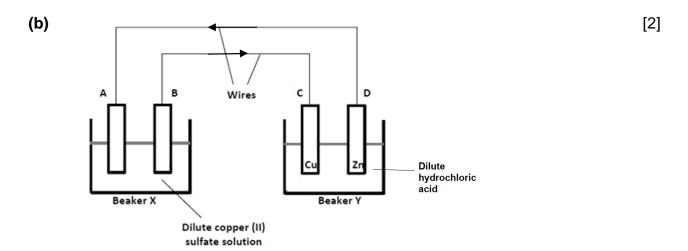
A1 (a) (i) B has Weak intermolecular force of attraction [0.5] between simple molecules[0.5]
Little amount of energy required to overcome forces of attraction[0.5]

A has strong covalent bonds between the atoms [0.5]which extends throughout the vast network[0.5]
A lot of energy required[0.5]

(ii) Giant metallic structure [0.5]


E has strong electrostatic forces of attraction between cations and sea of delocalised electrons.[0.5]

Mobile electrons[0.5]


Giant ionic structure [0.5] solid D has opposite charged ions held fixed in position in solid state[0.5] no mobile ions.[0.5]

(b) Any group I [1]

(c) iron [1]

- (c) Anode: $2O^{2-} \rightarrow O_2 + 4e$ [1] [2] Cathode: $Fe^{3+} + 3e \rightarrow Fe$ [1]
- (d) $2Fe_2O_3 \rightarrow \Box 4Fe + 3O_2$ [3] Mole of $Fe_2O_3 = 10 \times 10^6/160 = 62500 \text{ mol } [1]$ Mole of $Fe = 62500 \times 2 = 125000 \text{ mol} [1]$ Mass of $Fe = 125000 \times 56 = 7 \text{ tonnes.} [1]$
- (e) Aluminium oxide is very stable.[1] [2] Alumium oxide cannot be reduced by carbon/hydrogen/carbon monoxide[1]
- **A5** (a) Beaker Y as the electrodes are metal of different reactivity[1] [2] Metals are connected in an electrolyte[1]

- (c) Electrode B : Effervescence, colourless and odourless gas at the anode.[1] [2] Electrode A: Cathode become bigger/ reddish brown solid coated on the cathode[1]
- (d) The electrode B become smaller/no gas evolved [2]

Electrode B oxidise to form copper (II)ions [1]as it is a reactive electrode.

OR

the electrolyte remain blue. [1] concentration of Cu²⁺ remain the same.[1]

A6 (a) A,C,D,B [1]

(b) Carbonate of Metal A. A is the least reactive metal. [1] [2] Its carbonate has the lowest thermal stability.[1]

- (c) (i) Metal A: No visible change/reaction [1] [2] Metal D: pale green solution becomes colourless [0.5] and grey solid produced.[0.5]
 - (ii) Add excess iron/iron(II)oxide/iron(II) hydroxide /iron(II) carbonate to dilute [3] sulfuric acid [1]
 Filter the mixture to obtain the filtrate[0.5]
 Heat to saturation and cool [0.5]Filter mixture to obtain residue[0.5]
 Wash residue with a small amount of distilled water[0.5], completely dry the residue with sheets of filter paper[0.5]
- (d) It will not rust. [2]
 D is more reactive than iron/ D loses electron more readily than iron[1]
 It corrode in place of iron.[1]

Section B

B7 (a) Structural formula of CF₃CF₃ [1]

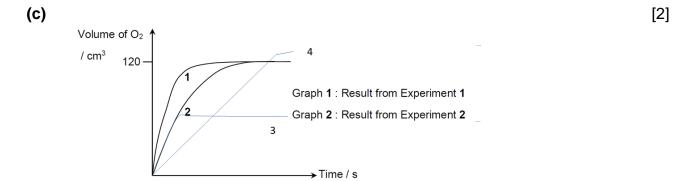
(b) HFCs do not contain chlorine atoms, which deplete the ozone layer [1].

(c) Two fluorine atoms [1]

(e) (i) UV light [1]

(ii) $CH_4 + F_2 \rightarrow CH_3F + HF[1]$ [2] $CH_3F + F_2 \rightarrow CH_2F_2 + HF[1]$

(iii) Fluorine has a smaller atomic radius than bromine/valence electrons are [2] closer from the nucleus [0.5]


Electrostatic forces of attraction between the nucleus and valence electrons are stronger [0.5].

valence electrons are more easily gain [0.5]

Fluorine will react more vigorously than bromine.[0.5]

B8 (a) Manganese(IV) oxide is a better catalyst because graph 1 has a steeper gradient [1]

(b) From the graph, volume of O_2 gas = 120 cm³ [2] No. of mol of O_2 = 120/24000 = 0.005 mol [1] Hence, from the equation, no. of mol of H_2O_2 = 0.005X2 = 0.01 mol[0.5] Concentration = 0.01/50 X 1000 = 0.200 mol/dm³[0.5]

- (d) Increase temperature of hydrogen peroxide [1]
 OR used powdered catalyst
- (e) The energy absorbed to break bonds in 2 mole of H_2O_2 is lesser than [1] the energy released to form bonds in 2 moles of water and 1 mole of oxygen.[1]
- (f) Hydrogen peroxide is a reducing agent. Hydrogen peroxide is oxidised.[1] [2] Oxidation state of oxygen increases from -1 in H₂O₂ to 0 in O₂.[1]
- **E** (a) Reduction. [0.5]Nitrogen gain electron to form ammonium ion[0.5] [1]

B9

(b)
$$2 \text{ NO}_3^- + 12 \text{ H}^+ + 10 \text{ e}^- \rightarrow \text{ N}_2 + 6 \text{ H}_2\text{O}$$
 [1]

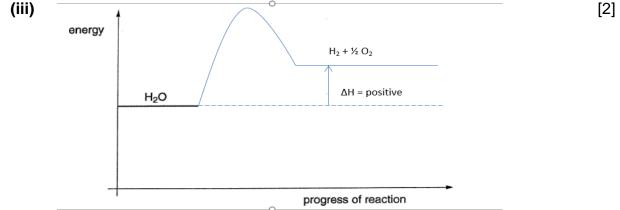
- (c) Add aqueous sodium hydroxide and warm, test with moist red litmus paper. If red litmus paper turns blue, ammonium ion present.[1]

 If moist red litmus paper turns blue only when Al added, nitrate ion is present. [1]
- (d) (i) The sudden increase in volume occurs because the number of moles of gas produced is 1.5 times that of the reactant. Volume goes up by 1.5 times.[1]

Rate of combustion increases as oxygen is liberated by the process.[1] Concentration of oxygen increases. [1]

(ii) nitrogen dioxide dissolves in rain water and is oxidized by atmospheric [2] oxygen to form acid rain [1] Acid rain will corrode buildings made of cement, reactive metals and limestone.[1]

(iii)
$$2CO + 2NO \rightarrow N_2 + 2CO_2$$
 [1]


O (a) (i)
$$4x410 + 2x 460 - 3x436 - y = 206 [1]$$
 [2]
B9 $y = 1640 + 920 - 1308 - 206 = 1046 \text{ kJ/mol}[1]$

(ii) Triple bond [1]

(iii) Mole of
$$H_2 = 1000/24=41.667$$
 mol [1] [2]
Energy change = $206/3 \times 41.667$ = $+2860$ kJ[1]

(b) (i)
$$2H_2 \rightarrow 4H^+ + 4e$$
 [1]

Hydrogen is oxidized in a redox reaction by losing electrons to oxygen. (ii) [2] [1]The electrons given out by hydrogen flow through the external circuit [1], which constitutes the electric current.

