(@)

(b)

(©)

(@)

Given a differential equation of the form % = g(ﬁJ , use the substitution x=vy to show that
y y

[— dv=j%dy.

g(v)—v
[2]
Show that the differential equation
xye[ﬂ x_ e +(y*+ xz)e(yj , X,y =0
dy
can be written in the form & = g(ﬁJ . [2]
dy “\y

It is given that the curve of the differential equation (b) passes through the point (\/In 9,—\/5) :
Solve the differential equation given in (b), leaving your answer in the form y =h (gj . [7]

)

Show that =— for any positive integers n, k where n>k . [2]

H

Itisgiventhat a,a,,..,a, € R" andsis a positive integer where s<n.

Let S be Zailaiz...ais , Where the sum is taken over all i,..,i;e{L2,..,n} such that

1<i <1, <..<ig<n.

(b)
(©)

(d)

Find, in terms of n and s, the number of terms in S. [1]

Let m be a fixed integer where 1<m<n.

Find, in terms of n and s, the number of terms in S such that m & {iy, i,.....i } . [1]
1

Let g=(aa, -a,)" . Prove that

(1+a)(1+a,)(1+a,)=(1+g)".
[6]
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In this question, we will examine different ways of dividing circles.
(@) Consider the number of regions formed when a circle is cut n times. The cases where the

maximum number m, is achieved for n=2and 3 is illustrated below with the values of m,
stated.

4 7

Ilustrate the case where the maximum number m, is achieved for n=4. Hence deduce, with
justification, an expression for m, —m, , in terms of n and solve for m_. Explain briefly why
this represents the maximum number of regions. [7]

(b)  Suppose a circle is divided into 2n+1 congruent sectors, with n of them randomly coloured
black and the other n+1 randomly coloured white. A smaller concentric circle is placed on the
larger circle and also divided into 2n+1 congruent sectors, with n+1 of them randomly
coloured black and the other n randomly coloured white.

A possible case for n=7 is illustrated below.

Prove that, for all n, we can always find n+1 sectors with matched colours by suitably rotating
the smaller circle if necessary. [5]



The Fibonacci series is defined by

Fl = Fz =1, Fn+2 =F

n+l

+F, forn>1.
(@) Showthat Y F, =F,, —F, and state a similar result for >'F,_, . [3]
i=1 i=1
Let S be the set of all integers that can be written in the form F, +F +..+F , where n; is a
sequence of positive integers such that n, >2 and n, >n, +1 forall 1<i<t-1.
For example,

5isin S because, 5=F;.
54isin S because, 54=2+5+13+34=F,+FK +F +F,.
190 is in S because, 190=1+3+8+34+144=F, +F,+ K+ F, + F,.

(b)  Show that both 55 and 191 are in S. [2]

(c) () SupposekisinS, where k=F,+F, +F +..+F .

Show that k +1 is also in S. [3]

(i)  Hence, use mathematical induction to prove that all positive integers are in S. [6]

An ice-cream shop sells single scoop cones with k different flavours available. You may assume that
the shop does not allow mixing of flavours in any single scoop.

(@  An order of nsingle scoop cones is made where n >k . Given that all k flavours are bought and
the order includes an odd number of cones for each flavour, state a condition between n and k
and find the number of such possible orders. [3]

Choosing from the k possible flavours, a group of n kids orders one single scoop cone each.

(b) By considering all possible orders made by the n kids, explain why

[
k"=>"S(n,r)"R,
r=0
where S(n, r) denotes the number of ways to partition n distinct objects into r disjoint, non-
empty subsets and *P. =k(k —1)(k —2)...(k —r +1). [4]

(c)  Apply the principle of inclusion and exclusion to enumerate the number of possible orders
which include all k flavours and show that

S(n,k):%zk:cr(k—r)”,

where c, are expressions, in terms of r and k, to be determined. [5]
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The functions f and g are defined as follows.

f(x)=2x
g(xX)=x+1

An arrangement of functions f and g is a composition of functions f and g, where each function can
be composed any number of times, but at least once each. For example, fgfgfgfgf and gf®g are both
arrangements of f and g.

(@)

(b)

(©)

Given that h(x) =ax+b describes a function that is equal to an arrangement of f and g, find

the set of possible values of a and b. [2]
(i)  Show that g*f(x) =fg(x) . [1]
(i)  List all the arrangements of f and g that are equal to the function 4x +4. [2]
(i)  Find an expression for the arrangement g'fg’fg*(x) in terms of x, where i, j and k are

non-negative integers. [1]
(i)  Hence, or otherwise, show that for all positive integers m, the number of arrangements

of f and g that are equal to the function 4x+4m is (m+1)2. [5]
(iii) By using a suitable bijection, show that the number of arrangements of f and g that are

equal to the function 4x+4m is equal to the number of arrangements of f and g that are
equal to the function 4x+4m+1, where m is a positive integer. [3]

In this question, all variables represent positive integers.

The greatest common divisor of X, y and z, written gcd(X,y,z), is the largest positive integer that
divides each of x, y and z.

We say that (x,y,z) is a Pythagorean triple if x* + y*> =2z, If, in addition, gcd(x,y,z) =1, we say
that (x,y,z) is a primitive Pythagorean triple. Examples of primitive Pythagorean triples are
(3, 4,5), (5.12,13), (7,24,25) & (9, 40,41).

(@)

(b)

(©)
(d)

(i)  Find consecutive integers a and b such that (11,a,b) is a Pythagorean triple. [1]
(i) By an appropriate generalisation, show that there exist infinitely many primitive

Pythagorean triples. [2]
(i)  Find integers x, y and z satisfying gcd(x,y,z) =1, and gcd(xy, yz, zx) >1. [1]
(i) Show that if (x,y,z) is a primitive Pythagorean triple, then gcd(xy, yz,zx) =1. [5]
Let (x,y,Z) be a Pythagorean triple. Show that (xy)* +(yz)" +(2x)" = (- xy? )2 : [2]
Deduce carefully that the equation u* +v* +w* =t* has infinitely many integer solutions such

that ged(u,v,w) =1. [2]
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A Gaussian integer is a complex number where the real and imaginary parts are both integers.

(@)  Given any complex number z, show that there is a Gaussian integer w such that |z —w| < E

V2
[3]
(b)  Suppose that s, t are Gaussian integers with t =0 . By considering the complex number %

deduce that there are Gaussian integers g, r such that |r|<[t| and s=qt+r. [2]

(c) Letsandt be the Gaussian integers 5+ 4i and 1+ 2i respectively. By considering Gaussian

integers near i+§' , show that there are exactly 3 pairs of Gaussian integers (g, r) such that
+2i
|r|<|t| and s=gqt+r, and find these pairs. [4]

(d) Lets, t be Gaussian integers such that % is not a Gaussian integer, t =0 . Prove that there are

always at least two pairs of Gaussian integers (g, r) such that |r|<|t| and s=qt+r. [5]

End of Paper



