
 

1 (a) Given a differential equation of the form 
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1 1
 d  d

g( )
v y

v v y
=

−  .  

 [2] 

 (b) Show that the differential equation 
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  can be written in the form 
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 
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 (c) It is given that the curve of the differential equation (b) passes through the point ( )ln9, 2− . 

Solve the differential equation given in (b), leaving your answer in the form h
x

y
y

 
=  

 
.  [7]  

 

2 (a) Show that 
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 for any positive integers n, k where n k .  [2] 

 It is given that 1 2, , ... , na a a +   and s is a positive integer where s n .  

 

 Let S be 
1 2

...
si i ia a a , where the sum is taken over all 1, ..., {1,2,..., }si i n  such that 

1 21 ... si i i n     . 

 

(b) Find, in terms of n and s, the number of terms in S.  [1] 
 

(c)  Let m be a fixed integer where 1 m n  .  

 Find, in terms of n and s, the number of terms in S such that  1 2, ,..., si im i .  [1] 

(d) Let ( )
1

1 2
n

ng a a a= . Prove that 

( )( ) ( ) ( )1 21 1 1 1
n

na a a g+ + +  + . 

 [6] 
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3 In this question, we will examine different ways of dividing circles.  

(a) Consider the number of regions formed when a circle is cut n times. The cases where the 

maximum number 
nm is achieved for 2n = and 3 is illustrated below with the values of 

nm

stated. 

                                                    

  Illustrate the case where the maximum number 
nm is achieved for 4.n =  Hence deduce, with 

justification, an expression for 
1n nm m −−  in terms of n and solve for .nm  Explain briefly why 

this represents the maximum number of regions.    [7] 

(b) Suppose a circle is divided into 2 1n +  congruent sectors, with n of them randomly coloured 

black and the other 1n +  randomly coloured white. A smaller concentric circle is placed on the 

larger circle and also divided into 2 1n +  congruent sectors, with 1n +  of them randomly 

coloured black and the other n randomly coloured white.  

 A possible case for 7n =  is illustrated below.  

 

 

 

 

 

 

 

 

 

 

 

 Prove that, for all n, we can always find 1n +  sectors with matched colours by suitably rotating 

the smaller circle if necessary.  [5] 
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5 An ice-cream shop sells single scoop cones with k different flavours available. You may assume that 

the shop does not allow mixing of flavours in any single scoop. 

(a) An order of n single scoop cones is made where n k . Given that all k flavours are bought and 

the order includes an odd number of cones for each flavour, state a condition between n and k 

and find the number of such possible orders.  [3] 

 Choosing from the k possible flavours, a group of n kids orders one single scoop cone each. 

(b)  By considering all possible orders made by the n kids, explain why  
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 where S(n, r) denotes the number of ways to partition n distinct objects into r disjoint, non-

empty subsets and ( 1)( ) (2 1).k

r kP k k k r=  − +− −   [4] 

(c) Apply the principle of inclusion and exclusion to enumerate the number of possible orders 

which include all k flavours and show that  
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 where rc  are expressions, in terms of r and k, to be determined.   [5] 

 

 
  

4 The Fibonacci series is defined by 

1 2 2 11, or .f 1 n n nF F F F F n+ += = + =  

(a) Show that 
2 2 1 1

1

n

i n

i

F F F+

=

= − , and state a similar result for 
2 1

1

n

i

i

F +

=

 .  [3] 

 Let S be the set of all integers that can be written in the form 
1 2

...
tn n nF F F+ + + , where 

in  is a 

sequence of positive integers such that 
1 2n   and 

1 1i in n+  +  for all 1 1i t  − . 

 For example, 

 5 is in S because, 
55 F= . 

 54 is in S because, 
3 5 7 954 2 5 13 34 F F F F= + + + = + + + . 

 190 is in S because, 
2 4 6 9 12190 1 3 8 34 144 F F F F F= + + + + = + + + + . 

(b) Show that both 55 and 191 are in S.  [2] 

(c) (i) Suppose k is in S, where 
2 32 ...

su u uk F F F F= + + + + .  

  Show that 1k +  is also in S.  [3] 

 (ii) Hence, use mathematical induction to prove that all positive integers are in S.  [6] 
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6 The functions f and g are defined as follows. 

f ( ) 2

g( ) 1

x x

x x

=

= +
 

An arrangement of functions f and g is a composition of functions f and g, where each function can 

be composed any number of times, but at least once each. For example, fgfgfgfgf  and 3gf g  are both 

arrangements of f and g. 

(a) Given that h( )x ax b= +  describes a function that is equal to an arrangement of f and g, find 

the set of possible values of a and b. [2] 

(b) (i) Show that 2g f ( ) fg( )x x= .  [1] 

(ii) List all the arrangements of f and g that are equal to the function 4 4x + . [2] 

(c) (i) Find an expression for the arrangement g fg fg ( )i j k x  in terms of x, where i, j and k are 

non-negative integers. [1] 

(ii) Hence, or otherwise, show that for all positive integers m, the number of arrangements 

of f and g that are equal to the function 4 4x m+  is 2( 1)m + . [5] 

(iii) By using a suitable bijection, show that the number of arrangements of f and g that are 

equal to the function 4 4x m+  is equal to the number of arrangements of f and g that are 

equal to the function 4 4 1x m+ + , where m is a positive integer. [3] 

 

7 In this question, all variables represent positive integers.  

 The greatest common divisor of x, y and z, written gcd( , , )x y z , is the largest positive integer that 

divides each of x, y and z.  

 We say that ( , , )x y z  is a Pythagorean triple if 2 2 2x y z+ = . If, in addition, gcd( , , ) 1x y z = , we say 

that ( , , )x y z  is a primitive Pythagorean triple. Examples of primitive Pythagorean triples are 

( ) ( )3,4,5 , (5,12,13), (7,24,25) & 9,40,41 . 

(a) (i) Find consecutive integers a and b such that (11, , )a b  is a Pythagorean triple. [1] 

 (ii) By an appropriate generalisation, show that there exist infinitely many primitive 

Pythagorean triples.  [2] 

(b) (i) Find integers x, y and z satisfying gcd( , , ) 1x y z = , and gcd( , , ) 1xy yz zx  .   [1] 

 (ii) Show that if ( , , )x y z  is a primitive Pythagorean triple, then gcd( , , ) 1xy yz zx = .  [5] 

(c) Let ( , , )x y z  be a Pythagorean triple. Show that ( ) ( ) ( ) ( )
24 4 4 4 2 2xy yz zx z x y+ + = − .  [2] 

(d) Deduce carefully that the equation 4 4 4 2u v w t+ + =  has infinitely many integer solutions such 

that gcd( , , ) 1u v w = .  [2] 
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8 A Gaussian integer is a complex number where the real and imaginary parts are both integers. 

(a) Given any complex number z, show that there is a Gaussian integer w such that 
1

2
z w−  . 

 [3] 

(b) Suppose that s, t are Gaussian integers with 0t  . By considering the complex number 
s

t
, 

deduce that there are Gaussian integers q, r such that r t  and s qt r= + .  [2] 

(c) Let s and t be the Gaussian integers 5 4i+  and 1 2i+  respectively. By considering Gaussian 

integers near 
5 4i

1 2i

+

+
, show that there are exactly 3 pairs of Gaussian integers ( , )q r  such that 

r t  and s qt r= + , and find these pairs.   [4] 

(d) Let s, t be Gaussian integers such that 
s

t
 is not a Gaussian integer, 0t  . Prove that there are 

always at least two pairs of Gaussian integers (q, r) such that r t  and s qt r= + .  [5] 
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