1 (a) Given a differential equation of the form $\frac{dx}{dy} = g\left(\frac{x}{y}\right)$, use the substitution x = vy to show that $\int \frac{1}{g(v) - v} dv = \int \frac{1}{y} dy.$ [2]

(b) Show that the differential equation

can be

$$xye^{\left(\frac{x}{y}\right)^{2}}\frac{dx}{dy} = y^{2} + \left(y^{2} + x^{2}\right)e^{\left(\frac{x}{y}\right)^{2}}, x, y \neq 0$$

written in the form $\frac{dx}{dy} = g\left(\frac{x}{y}\right).$ [2]

(c) It is given that the curve of the differential equation (b) passes through the point $\left(\sqrt{\ln 9}, -\sqrt{2}\right)$. Solve the differential equation given in (b), leaving your answer in the form $y = h\left(\frac{x}{y}\right)$. [7]

2 (a) Show that
$$\frac{\binom{n-1}{k-1}}{\binom{n}{k}} = \frac{k}{n}$$
 for any positive integers n, k where $n \ge k$. [2]

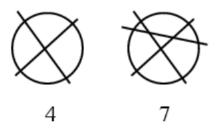
It is given that $a_1, a_2, \dots, a_n \in \mathbb{R}^+$ and s is a positive integer where $s \le n$.

Let S be $\sum a_{i_1}a_{i_2}\dots a_{i_s}$, where the sum is taken over all $i_1, \dots, i_s \in \{1, 2, \dots, n\}$ such that $1 \le i_1 < i_2 < \dots < i_s \le n$.

- (b) Find, in terms of n and s, the number of terms in S. [1]
- (c) Let *m* be a fixed integer where $1 \le m \le n$. Find, in terms of *n* and *s*, the number of terms in *S* such that $m \in \{i_1, i_2, ..., i_s\}$. [1]
- (d) Let $g = (a_1 a_2 \cdots a_n)^{\frac{1}{n}}$. Prove that

$$(1+a_1)(1+a_2)\cdots(1+a_n) \ge (1+g)^n.$$
 [6]

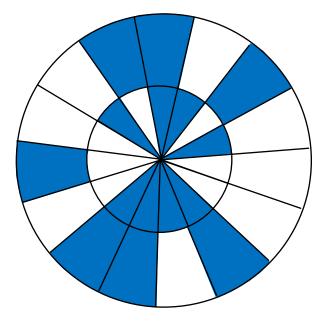
- 3 In this question, we will examine different ways of dividing circles.
 - (a) Consider the number of regions formed when a circle is cut *n* times. The cases where the maximum number m_n is achieved for n = 2 and 3 is illustrated below with the values of m_n stated.



Illustrate the case where the maximum number m_n is achieved for n = 4. Hence deduce, with justification, an expression for $m_n - m_{n-1}$ in terms of *n* and solve for m_n . Explain briefly why this represents the **maximum** number of regions. [7]

(b) Suppose a circle is divided into 2n+1 congruent sectors, with *n* of them randomly coloured black and the other n+1 randomly coloured white. A smaller concentric circle is placed on the larger circle and also divided into 2n+1 congruent sectors, with n+1 of them randomly coloured black and the other *n* randomly coloured white.

A possible case for n = 7 is illustrated below.



Prove that, for all n, we can always find n+1 sectors with matched colours by suitably rotating the smaller circle if necessary. [5]

4 The Fibonacci series is defined by

$$F_{1} = F_{2} = 1, \qquad F_{n+2} = F_{n+1} + F_{n} \text{ for } n \ge 1.$$

Show that $\sum_{i=1}^{n} F_{2i} = F_{2n+1} - F_{1}$, and state a similar result for $\sum_{i=1}^{n} F_{2i+1}$. [3]

Let S be the set of all integers that can be written in the form $F_{n_1} + F_{n_2} + ... + F_{n_i}$, where n_i is a sequence of positive integers such that $n_1 \ge 2$ and $n_{i+1} > n_i + 1$ for all $1 \le i \le t - 1$.

For example,

(a)

5 is in S because, $5 = F_5$.

54 is in S because, $54 = 2 + 5 + 13 + 34 = F_3 + F_5 + F_7 + F_9$.

190 is in S because, $190 = 1 + 3 + 8 + 34 + 144 = F_2 + F_4 + F_6 + F_9 + F_{12}$.

(b) Show that both 55 and 191 are in S.

(c) (i) Suppose k is in S, where
$$k = F_2 + F_{u_2} + F_{u_3} + ... + F_{u_s}$$

Show that k+1 is also in *S*.

- 5 An ice-cream shop sells single scoop cones with *k* different flavours available. You may assume that the shop does not allow mixing of flavours in any single scoop.
 - (a) An order of *n* single scoop cones is made where $n \ge k$. Given that all *k* flavours are bought and the order includes an odd number of cones for each flavour, state a condition between *n* and *k* and find the number of such possible orders. [3]

Choosing from the k possible flavours, a group of n kids orders one single scoop cone each.

(b) By considering all possible orders made by the *n* kids, explain why

$$k^n = \sum_{r=0}^k \mathbf{S}(n,r)^k P_r$$

where S(n, r) denotes the number of ways to partition *n* distinct objects into *r* disjoint, nonempty subsets and ${}^{k}P_{r} = k(k-1)(k-2)...(k-r+1)$. [4]

(c) Apply the principle of inclusion and exclusion to enumerate the number of possible orders which include all k flavours and show that

$$S(n,k) = \frac{1}{k!} \sum_{r=0}^{k} c_r (k-r)^n$$

where c_r are expressions, in terms of r and k, to be determined.

[5]

[2]

[3]

6 The functions f and g are defined as follows.

$$f(x) = 2x$$
$$g(x) = x + 1$$

An arrangement of functions f and g is a composition of functions f and g, where each function can be composed any number of times, but at least once each. For example, fgfgfgfgf and $gf^{3}g$ are both arrangements of f and g.

- (a) Given that h(x) = ax + b describes a function that is equal to an arrangement of f and g, find the set of possible values of a and b. [2]
- (b) (i) Show that $g^2 f(x) = fg(x)$. [1]
 - (ii) List all the arrangements of f and g that are equal to the function 4x + 4. [2]
- (c) (i) Find an expression for the arrangement $g^i f g^j f g^k(x)$ in terms of x, where i, j and k are non-negative integers. [1]
 - (ii) Hence, or otherwise, show that for all positive integers *m*, the number of arrangements of f and g that are equal to the function 4x + 4m is $(m+1)^2$. [5]
 - (iii) By using a suitable bijection, show that the number of arrangements of f and g that are equal to the function 4x + 4m is equal to the number of arrangements of f and g that are equal to the function 4x + 4m + 1, where m is a positive integer. [3]
- 7 In this question, all variables represent positive integers.

The greatest common divisor of x, y and z, written gcd(x, y, z), is the largest positive integer that divides each of x, y and z.

We say that (x, y, z) is a Pythagorean triple if $x^2 + y^2 = z^2$. If, in addition, gcd(x, y, z) = 1, we say that (x, y, z) is a **primitive** Pythagorean triple. Examples of primitive Pythagorean triples are (3,4,5), (5,12,13), (7,24,25) & (9,40,41).

- (a) (i) Find consecutive integers a and b such that (11, a, b) is a Pythagorean triple. [1]
 - (ii) By an appropriate generalisation, show that there exist infinitely many primitive Pythagorean triples. [2]
- (b) (i) Find integers x, y and z satisfying gcd(x, y, z) = 1, and gcd(xy, yz, zx) > 1. [1]
 - (ii) Show that if (x, y, z) is a primitive Pythagorean triple, then gcd(xy, yz, zx) = 1. [5]
- (c) Let (x, y, z) be a Pythagorean triple. Show that $(xy)^4 + (yz)^4 + (zx)^4 = (z^4 x^2y^2)^2$. [2]
- (d) Deduce carefully that the equation $u^4 + v^4 + w^4 = t^2$ has infinitely many integer solutions such that gcd(u, v, w) = 1. [2]

- (a) Given any complex number z, show that there is a Gaussian integer w such that $|z w| \le \frac{1}{\sqrt{2}}$. [3]
- (b) Suppose that *s*, *t* are Gaussian integers with $t \neq 0$. By considering the complex number $\frac{s}{t}$, deduce that there are Gaussian integers *q*, *r* such that |r| < |t| and s = qt + r. [2]
- (c) Let s and t be the Gaussian integers 5+4i and 1+2i respectively. By considering Gaussian integers near $\frac{5+4i}{1+2i}$, show that there are exactly 3 pairs of Gaussian integers (q, r) such that |r| < |t| and s = qt + r, and find these pairs. [4]
- (d) Let *s*, *t* be Gaussian integers such that $\frac{s}{t}$ is **not** a Gaussian integer, $t \neq 0$. Prove that there are always at least two pairs of Gaussian integers (q, r) such that |r| < |t| and s = qt + r. [5]

End of Paper