An athlete on a special diet would like to have battered fish fillet, coleslaw and fries for lunch. He must ensure that his intake (in grams) of protein, carbohydrates and fat per meal is 55g, 130g, and 70g respectively. The table below shows the nutritional breakdown for one serving of each item.

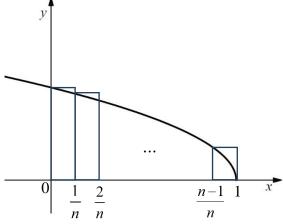
	Protein	Carbohydrates	Fat
	(in grams)	(in grams)	(in grams)
Battered fish fillet	20	20	15
Coleslaw	4	15	8
Fries	3	45	16

Calculate the number of servings of battered fish fillet, coleslaw and fries that the athlete should take for his lunch. [3]

2 (a) Given that
$$\sum_{r=1}^{n} r^2 = \frac{n}{6} (n+1)(2n+1)$$
, find $\sum_{r=1}^{n} \left[\left(\frac{1}{2} \right)^r - r \left(r + \frac{1}{3} \right) \right]$, in terms of n . [4]

(b) Explain why
$$\sum_{r=1}^{n} \left[\left(\frac{1}{2} \right)^r - r \left(r + \frac{1}{3} \right) \right] < 1$$
 for all positive integers n . [1]

The diagram below shows a curve with equation $y = \sqrt{1-x}$. Let A be the area bounded by the curve and the axes. A total of n rectangles, each of equal width, are constructed to approximate the value of A.



(a) Show that the total area of n rectangles is given by

$$\frac{1}{n\sqrt{n}}\sum_{r=0}^{n-1}\sqrt{n-r}.$$
 [2]

(b) Without using a calculator, evaluate
$$\lim_{n\to\infty} \frac{1}{n\sqrt{n}} \sum_{r=0}^{n-1} \sqrt{n-r}$$
. [3]

- 4 (a) Sketch the curve with equation $y = \left| \frac{2x q}{x 1} \right|$, where q > 2, stating the equations of the asymptotes and the coordinates of the points where the curve meets the axes. [3]
 - (b) Hence, by adding a suitable line on the same diagram in part (a), solve the inequality $\left|\frac{2x-q}{x-1}\right| 2x > 0$, giving your answer in terms of q. [3]
- Show that the distance L between any point (x, y) on the curve $y = e^{2x} 3$ and the fixed point A(2,-1) satisfies the equation $L^2 = (x-2)^2 + (e^{2x}-2)^2$. [1]

Using differentiation, find the *x*-coordinate of the point *P* on the curve that is closest to the point *A*, leaving your answer in 4 decimal places. You do not need to show that *P* is closest to *A*. [3]

A variable point Q moves along the curve $y = e^{2x} - 3$ such that its x-coordinate is increasing at a rate of 0.5 units per second. Find the exact rate of change of L at the instant when Q is on the y-axis.

6 The curve *C* has equation

In
$$y^2 = x^2 y$$
, where $x \in \square$, $-1 \le y < 0$.

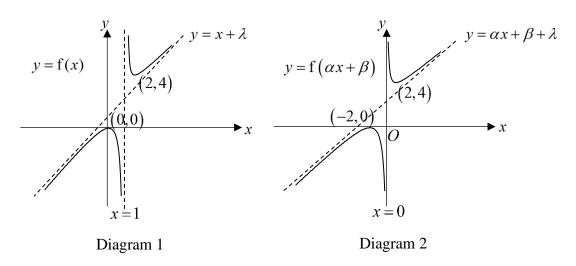
It is given that C has only one turning point.

(a) Show that
$$\frac{dy}{dx}(2-x^2y) = 2xy^2$$
. [3]

- (b) Find the coordinates of the turning point. [2]
- (c) Calculate the value of $\frac{d^2y}{dx^2}$ at the turning point and determine whether the turning point is a maximum or a minimum. [3]

7 (a) Describe a sequence of two transformations that will transform the graph of y = f(x) to the graph of $y = f(\alpha x + \beta)$, where α and β are positive constants. [2]

Diagram 1 and Diagram 2 show the graphs of y = f(x) and $y = f(\alpha x + \beta)$ respectively. The turning points with coordinates (0,0) and (2,4) on y = f(x) correspond to the points with coordinates (-2,0) and (2,4) respectively on $y = f(\alpha x + \beta)$. The asymptotes x = 1 and $y = x + \lambda$ on y = f(x) correspond to the asymptotes x = 0 and $y = \alpha x + \beta + \lambda$ respectively on $y = f(\alpha x + \beta)$.



- (b) Find the value of α and of β . [2]
- (c) On a separate diagram, sketch the graph of y = f'(x), giving the coordinates of the points where the graph crosses the axes and the equations of the asymptotes, if any.

 [3]

8 The function f is defined by

$$f(x) = \begin{cases} 2 - \ln(x + e) & \text{for } -e < x < 0, \\ \cos(\frac{\pi}{2}x) & \text{for } 0 \le x \le 1. \end{cases}$$

(a) Given that the inverse function f^{-1} exists, find the exact value of m if $f^{-1}(m) = -1$. [2]

Another function g is defined by

$$g(x) = \sin x$$
, for $0 \le x \le \frac{\pi}{4}$.

- (b) Explain why the composite function fg exists. [2]
- (c) Find the exact value of $fg\left(\frac{\pi}{6}\right)$. [2]

The domain of f is further restricted to $0 \le x \le 1$.

(d) By considering $f^2(1)$ and $f^3(1)$, deduce the value(s) of $f^n(1)$ where n is a positive integer. [2]

- 9 Referred to the origin O, a variable point R has position vector **r** and the fixed points A and B have position vectors **a** and **b** respectively, where **a** and **b** are non-zero vectors.
 - (a) If \mathbf{a} and \mathbf{b} are parallel, find $\mathbf{a} \times \mathbf{b}$. [1]
 - (b) If a and b are non-parallel, interpret geometrically the following vector equations:

(i)
$$\mathbf{r} \times (\mathbf{b} - \mathbf{a}) = \mathbf{0}$$
, [2]

(ii)
$$\mathbf{r} \Box (\mathbf{b} - \mathbf{a}) = 0$$
. [2]

It is now given that the coordinates of A and B are (-1, 2, 2) and (6, -2, -4) respectively.

(c) Use a vector product to find the area of the triangle *OAB*. [3]

10 It is given that $I_n = \int \frac{x^n}{\sqrt{1 - 9x^4}} dx$.

(a) Find
$$I_3$$
. [2]

- (b) By using the substitution $u = x^2$, find I_1 . [4]
- (c) Using integration by parts and the result in part (a), find the exact value of

$$\int_{0}^{\frac{1}{\sqrt{3}}} x \sin^{-1}(3x^{2}) \, \mathrm{d}x.$$
 [4]

A construction company is installing cables on the side of a building. Points (x, y, z) are defined relative to a main anchor point O located at (0,0,0), where units are in metres. Cables are laid in straight lines and the widths of the cables can be neglected.

An existing cable L starts at the main anchor point O and goes in the direction of $\begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$. A new

cable M passing through points P(1, -1, 1) and Q(3, 0, 0) is installed.

(a) Using a non-calculator method, show that the cables L and M do not meet. [4]

The construction company wishes to connect the point P to an inclined rectangular roof extension that is modelled by the plane with equation 2x+3y+z=28. It was found that the best way is to use a cable to connect the point P to the point P on the rectangular roof extension that is closest to P.

- (b) Find the coordinates of the point F. [3]
- (c) Hence find the exact length, in metres, of the cable needed to connect point P to the rectangular roof extension. [2]

12 The parametric equations of the curve C are

$$x = \tan \theta - 1$$
 and $y = 2 \sec \theta$, where $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$.

- (a) Find $\frac{dy}{dx}$ in terms of θ , leaving your answer in a single trigonometric function. [2]
- (b) Find the equation of the tangent to C at the point where it cuts the y-axis, leaving your answer in exact form. [3]
- (c) Find the Cartesian equation of C. [1]
- (d) Find the equations of the asymptotes and state the coordinates of any turning point(s).

[3]

(e) The region bounded by the tangent found in part (b), the curve C and the line x = -1 is rotated completely about the x-axis. Calculate the volume obtained. [3]

- At the start of January 2014, Leon took a home loan of \$500 000 from a bank that offers a fixed monthly interest rate of 0.3%, to buy an apartment unit in a condominium. The interest was added to the amount owed on the 15th of every month, with the first interest amount added on 15 January 2014. Leon made a monthly repayment of \$x\$ on the 20th of every month, with the first repayment on 20 January 2014.
 - (a) Show that the amount (in dollars) that Leon owed at the end of *n* months was

$$500000(1.003)^{n} - \frac{1000x}{3}(1.003^{n} - 1).$$
 [3]

Leon planned to repay the loan fully in 360 monthly repayments.

(b) Find the value of x, giving your answer to the nearest cents. [2]

The estate management collects a monthly maintenance fee from each apartment unit within the condominium at the start of every month. The monthly maintenance fee on 1 January 2014 was \$400. To cope with the rising cost of maintenance over time, the estate management increased the monthly maintenance fee by k every 2 years such that the monthly maintenance fee increased to 400+k on 1 January 2016 and to 400+2k on 1 January 2018 and so on.

Show that the total maintenance fee (in dollars) that Leon paid at the end of 10 years was of the form s+tk, where s and t are positive constants to be determined. [3]

The value of Leon's apartment unit increased to \$750 000 at the end of December 2023. It was also known that k = 50.

(d) By considering the amount Leon owed, along with the repayment and maintenance fee that he paid over the 10 years, explain, with justification, whether Leon should sell his apartment unit at the end of December 2023 if he received an offer of \$750 000 from an interested buyer. [4]

END OF PAPER