The ORIGINAL Ultimate Chemistry O-Level Quick Revision Guide

"师傅领进门,修行在个人"

translated to: "While a teacher can guide you in your learning, it is eventually still your own effort and determination which decides the outcome"

Topics in O-Level Chemistry

Ast ond

ord

	Tick off the table as you do your revision	1*	Zna	3'"	4"	ວ"
	The table as you do your revision.		rev	rev	rev	rev
1	Measurement and Experimental					
	Techniques					
2	Purification and separation					
3	Kinetic particle theory					
4	Elements, compounds and mixtures					
5	Atomic structure					
6	Chemical Bonding and writing of					
	equations					
7	Acids and bases					
8	Preparation of salts					
9	QA					Ī
10	Mole concept					
11	Periodic table and periodicity					
12	Redox					Ī
13	Metals					Ī
14	Ammonia					
15	Energy changes					
16	Speed of reaction					
17	Air and atmosphere					
18	Electrolysis					
19	Organic chemistry					
		<u> </u>		1	1	

You Tube

Lecture Videos @ channel "Chem Lectures" on YouTube.

OR

Visit **www.chemlectures.sg** for Full O-Level Chemistry lecture videos AND comprehensive notes

1	Displacement of water					
	For gases which are insoluble in water					
	• E.g., hydrogen, oxygen, carbon dioxide					
2	Downward delivery	/				
_	 For cases which 	h are den	ser than air (and	soluble in water)		
	 F a chlorine 			Solubie in water)		
3	Linward delivery					
3			demonstration and	and a chable for the	()	
	 For gases which For budges on 	in are less	dense than air (and soluble in wa	ter)	
	• E.g., hydrogen,	, ammonia				
4	Using a gas syring	e				
	• When there is	a need to	monitor the rate	of evolution of a	gas, i.e., how much	gas was
	produced in the	e reaction	within a certain c	Juration		
5	Concentrated sulfu	iric acid - l	used to dry acidic	c gases or gases	which do not react w	vith acids
6	Calcium oxide - us	ed to drv a	alkaline gases. e	.g, ammonia		
<u> </u>		, -	3 , , ,	Den it		1
7	Gas	Formula	Colour	Density (compared to air)	Solubility in water	
	Ammonia	NHa	Colourless		Extremely soluble	
	Carbon dioxide		Colourless	Denser	Slightly soluble	-
	Chlorine	Cl2	Greenish- vellow	Denser	Soluble	-
	Hydrogen	H ₂	Colourless	Less dense	Insoluble	-
	Hydrogen Chloride	HCI	Colourless	Denser	Verv soluble	-
	Oxvaen	O ₂	Colourless	Slightly denser	Slightly soluble	-
	Carbon monoxide	CO	Colourless	Slightly denser	Slightly soluble	
	Nitrogen	N ₂	Colourless	Slightly denser	Insoluble	-
	Sulphur dioxide	SO ₂	Colourless	Denser	Very soluble	
	Helium	He	Colourless	Less dense	Insoluble	-
8	A pure substance i	s a single	substance not m	nixed with anything	a else. e.a pure aol	d. pure
•	silver, distilled wate	er.			5 , - 5 , r - 5 -	-,
0	Δ mixture consists	of two or i	more substances	that are not cher	nically combined too	othor
9	A mixture consists			for	fileally combined log	
			ge juice, sea wa		<u> </u>	
10	Decanting separate	es an inso	luble solid from a	a liquid by pouring	off the liquid from the	ne
	container carefully.					
11	Filtration is used to	separate	an insoluble soli	d from a liquid.		
	The solid is col	lected in tl	he filter paper \Rightarrow	residue		
	• The liquid that passes through the filter paper and collected in the beaker \Rightarrow filtrate					
12	Evaporation is used to separate dissolved solids from a solution					
12						
13	Crystallisation separates a dissolved solid from a solution, forming pure crystals of the					
	substance.					
14	Sublimation is use	d to separ	ate a mixture of	solids, one of wh	nich sublimes. Subli	mation is
	the process of cha	ngina fror	n a solid to vapo	our on heating wit	hout going through	the liauid
	state.	3 3				1
15	Simple distillation of	enarator	a nure liquid from	n a solution		
13					al. This allows it t	
	Ine thermomet	er is place	e near the exit o	or the distillation fla	ask. This allows it to	measure
	the temperatur	e of the v	apour which wil	I enter the conde	nser and be conde	nsed and
	collected as dis	stillate.				

16	Fractional distillation separates mixtures of miscible liquids with different boiling points.
	Miscible liquids are completely soluble in each other to form one liquid.
	• The glass beads in the fractionating column provides a large surface area to volume ratio
	for cooling of the vapours. This helps to ensure that only one liquid of the lower boiling
	point distils over. This allows better separation of the two or more miscible liquids in the
	round-bottomed flask.
	• The thermometer is placed near the exit of the fractionating column. This allows it to
	measure the temperature of the vapour which will enter the condenser and be condensed
	and collected as distillate.
17	Chromatography is a method of separating and identifying mixtures. Only a very small initial
	sample is required to generate the chromatogram.
	(1) The dye to be chromatographed is dissolved in a suitable solvent.
	(2) A drop of the dissolved dye is placed on the pencil line near the bottom of a strip of filter
	paper (or chromatography paper can be used). The pencil line shows the starting position
	of the drop of dissolved dye. This is important in determining the R _f value.
	(3) The filter paper is dipped into a tube containing a suitable solvent, making sure the solvent
	level is below the spot.
	(4) The solvent travels up the filter paper and the dye in the spot dissolves and travel up the
	paper at different speeds. This separates the dye into its various components.
	(5) When the solvent front reaches nearly the top of the filter paper, the filter paper is
	removed.
	(6) The result is called a chromatogram.
18	R _f value is the distance moved by a substance relative to that moved by the solvent.
	$R_{e} = \frac{\text{distance travelled by a substance}}{1}$
	distance travelled by the solvent
19	A locating agent is a substance that reacts with the substances on the chromatography paper
	to produce a coloured product.
20	When chromatographed, a pure substance only produces a single spot on the chromatogram.
21	A pure substance has a fixed melting and boiling point, e.g., pure water melts at 0 °C and
	boils at 100 °C.
22	Impurities affect the melting point in two ways:
	• Lowers the melting point. The greater the amount of impurity, the lower the melting point.
	Substance melts over a range of temperatures,
23	Impurities affect the boiling point in two ways:
	• Raises the boiling point. The greater the amount of impurity, the higher the boiling point.
	 Liquid bails over a range of temperatures, i.e., no share bailing point.
24	Liquid boils over a range of temperatures, i.e., no sharp boiling point.
∠ 4	The kinetic particle theory states that:
24	 Equilabolis over a range of temperatures, i.e., no sharp boling point. The kinetic particle theory states that: Particles are discrete and are too small to be seen directly.
24	 Equilabolis over a range of temperatures, i.e., no sharp boling point. The kinetic particle theory states that: Particles are discrete and are too small to be seen directly. There are spaces between particles of matter, and this space is different between
24	 Equilabolis over a range of temperatures, i.e., no sharp boling point. The kinetic particle theory states that: Particles are discrete and are too small to be seen directly. There are spaces between particles of matter, and this space is different between solids, liquids and gases.
24	 Equilabolis over a range of temperatures, i.e., no sharp boling point. The kinetic particle theory states that: Particles are discrete and are too small to be seen directly. There are spaces between particles of matter, and this space is different between solids, liquids and gases. Particles are in constant random motion, and they move at different speeds in solids,
24	 Equilabolis over a range of temperatures, i.e., no sharp boling point. The kinetic particle theory states that: Particles are discrete and are too small to be seen directly. There are spaces between particles of matter, and this space is different between solids, liquids and gases. Particles are in constant random motion, and they move at different speeds in solids, liquids and gases.
24	 Equilabolis over a range of temperatures, i.e., no sharp boling point. The kinetic particle theory states that: Particles are discrete and are too small to be seen directly. There are spaces between particles of matter, and this space is different between solids, liquids and gases. Particles are in constant random motion, and they move at different speeds in solids, liquids and gases. Diffusion is the spreading and mixing of particles in liquids and gases.

	The particles move from a region of higher concentration to a region of lower						
	concentration, i.e., down a diffusion gradient.						
26	Two factors affect the rate of diffusion:						
	Temperature: Particles move	e faster at higher temp	eratures as they absorb the heat				
	energy. The faster the partic	les move, the faster the	rate of diffusion, i.e., the higher the				
	temperature, the faster the ra	te of diffusion.					
	Mass of particle: The greater	r the (molecular) mass o	of a particle, the slower the rate of				
	diffusion.						
27							
	Particles in a Solid	Particles in a Liquids	Particles in a Gases				
	- Desked sleeply		- For opert and in a				
	Packed closely	Packed closely	• Far apart, and in a				
	ordeny	an ordeny					
			Large spaces				
	Very little empty	Very little empty	between them.				
	space between	space between	• Can be				
	them.	them, although	compressed easily.				
	Cannot be		Vibrate and are				
	compressed.	Solids.	free to move				
	Vibrate but cannot	Cannot be	throughout the				
	move freely about	compressed.	container.				
	their fixed positions.	Vibrate and can					
		move freely					
		throughout the					
		liquid.					
28	Melting						
	(1) Particles in the solid absorb e	energy.					
	(2) This energy causes the partic	cles to vibrate faster abou	ut their fixed positions.				
	(3) The vibrations of the particles	s overcome the forces of	attraction between them.				
	(4) The particles are no longer in	i fixed positions.					
	(5) They can now move about fre	eely, although still packed	d closely together.				
29	Freezing						
	(1) Particles in the liquid lose end	ergy.					
	(2) The particles begin to move more slowly as the temperature decreases.						
	(3) The particles are overcome b		and can no longer move meety.				
	(4) The particles settle into fixed positions.						
20	(5) The liquid has now frozen to form a solid.						
30	(1) Particles in the liquid shearh	enerav					
	(1) Failucies in the liquid absolute (2) The particles move faster as	tomperature increases					
	(2) The particles move faster as	nergy to overcome the	forces of attraction holding them				
	together	shergy to overcome the					
	(1) The particles move further on	part and more freely					
	(5) When the particles gain oncu	igh energy to overcome b	ooth the forces of attraction and				
	atmospheric pressure the lig	uid changes into a gas					
L Convrie	ht of chemlectures so	4 of 26	www.chemlectures.so				
If you w	wish to reproduce this for mass use as		Chem Lectures @ Youtube				

If you wish to reproduce this for mass use, seek permission first through www.chemlectures.sg.

31	An element is a substance that cannot be broken down into simpler substances by chemical
	methods.
32	An atom is the smallest component of an element having the chemical properties of the element.
33	A molecule is a group of two or more atoms chemically combined together.
34	A compound is a substance containing two or more elements chemically combined together.
35	An atom or a group of atoms that has an electrical charge is called an ion.
36	A mixture consists of two or more substances (can be elements, compounds, or both) that
-	are not chemically combined together.
37	An atom is the smallest component of an element having the chemical properties of the element.
38	Isotopes are atoms of the same element (or same number of protons) with different number
	of neutrons. Isotopes have different physical properties but similar chemical properties.
39	Atoms lose or gain / share valence electrons to attain the stable electronic structure of a noble
	gas.
40	A metallic bond is the electrostatic attractive force between the positively charge metal ions and the negatively charged delocalised electrons
41	Structure of metals: Lattice of metal cations surrounded by a "sea' of mobile (or delocalised)
	valence electrons.
42	High Density: Metals consist of a giant metallic lattice of closely-packed, regular arrangement
	of metal cations surrounded by delocalised electrons. Hence, metals have high density as
43	Malleability and ductility of metals
	 Pure metal contains metal cations of the same size and are arranged in a regular, orderly
	manner, allowing the layers of cations to slide over one another easily.
	Non-directional nature of the metallic bonds allows layers of metal cations to slide over
	one another without breaking the strong metallic bonds.
44	High melting point of metals: A large amount of energy is required to overcome the strong
	electrostatic attraction forces between the cations and the negative delocalised electrons.
45	Good electrical conductivity: Presence of mobile valence electrons which can migrate freely
46	An ionic head in the strong electrostatic attraction between positively shared ione (actions)
40	and negatively charged ions (anions).
47	Ionic compounds are usually crystalline solids which are hard but brittle.
	• Hard: A large amount of energy is required to overcome the strong electrostatic attraction
	between the cations and anions.
	• Brittle: When a large enough force is applied, the layers of ions can slide, bringing ions of
	like charges next to each other. These ions of like charges repel each other and the ionic
	lattice shatters.
48	High melting points of ionic compounds: Large amount of energy must be supplied to
	overcome these strong forces of electrostatic attraction between the cations and anions.
	Generally, the higher the charges of the positive and negative ions the stronger the ionic
	bonds and the higher the melting point.
49	lonic compounds conducts electricity in molten and aqueous states but non-conducting in
	solid state

	• Solid state: The ions are held in fixed positions in a giant ionic crystal lattice structure by
	strong electrostatic forces of attraction and thus, the ions are unable to move freely to
	conduct electricity.
	 Molten or liquid or aqueous state: The lons are mobile and free to move and will migrate to the electrodes when a potential differences is applied.
50	to the electrodes when a potential difference is applied.
50	nuclei of the atoms
51	Substances with simple covalent structures
0.	Structure consists of small, discrete covalent molecules
	 Atoms within a molecule are joined by strong intramolecular covalent bonds while weak
	intermolecular forces of attraction exists between separate molecules and holds them
	together.
	The weak intermolecular forces are easily overcome
52	Substances with giant covalent structures
	All the atoms in substances with giant covalent structure are held tightly by strong covalent
	bonds and form a giant covalent molecule
53	Diamond
	 Each carbon atom is joined to 4 other carbon atoms by strong covalent bonds
	Large amount of energy required to overcome the strong covalent bonds
	No free electrons to conduct electricity
54	Graphite
	Each carbon atom is joined to 3 other carbon atoms by strong covalent bonds
	 Turbonded valence electron per carbon atom which is delocalised between the layers and cap migrate along the layers to conduct electricity.
	 Small amount of energy is required to overcome the weak intermolecular forces between
	the lavers, allowing the lavers to slide over each other.
55	An acid is a substance which produces hydrogen ions (H ⁺) when it is dissolved in water.
56	Lead seemingly appears to not react with either dilute hydrochloric acid or dilute sulfuric acid
50	Why?
	,
	This is due to the layer of lead(II) chloride or lead(II) sulfate that forms on the surface of the
	lead metal during its reaction with the respective acids. This layer is impervious to water and
	thus prevents the lead below from further reactions.
57	Most dilute acids react with metals to give a salt and hydrogen gas, e.g.,
	$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$
58	Acids react with carbonates and hydrogencarbonates to give a salt, water and carbon dioxide
	gas.
	$CaCO_{3}(s) + 2HCl(aq) \rightarrow CaCl_{2} + H_{2}O(I) + CO_{2}(g)$
59	Acids react with metal oxides and hydroxides to give a salt and water.
	$CuO(s) + H_2SO_4(aq) \longrightarrow CuSO_4(aq) + H_2O(l)$
60	Dilute acids can conduct electricity due to the present of mobile charge carriers, i.e., ions.
	$HCl(aq) \rightarrow H^{+}(aq) + Cl^{-}(aq)$
61	An acid does not behave as an acid unless water is present. Water is required for the
	iornation of the hydrogen ions.

62	Basicity (or proticity) of an acid refers to the maximum number of hydrogen ions in one					
	molecule of an acid that can be replaced by	/ a metal.				
	Type of acid	Example(s)				
	Monobasic (monoprotic)	HC1, HNO ₃				
	Dibasic (diprotic)	$H_2SO_4, H_2SO_3, H_2CO_3, H_3PO_3$				
	Tribasic (triprotic)	H ₃ PO ₄				
63	A strong acid is one that is fully dissociated	(ionised) in water to give H ⁺ ions.				
64	A weak acid is one that is partially dissociat	ed (ionised) in water to give H ⁺ ions, e.g., organic				
	acids such as ethanoic acid.					
	$CH_3COOH(aq) \rightleftharpoons CH_3COO^{-}(aq) + H^{+}(aq)$					
65	Formation of acid rain					
	Sulfur dioxide (SO ₂) dissolves in rainwa	ter to form sulfurous acid (H_2SO_3).				
	SO at					
	In the presence of oxygen, sulfur dioxide	e can be converted into sulfur trioxide (SO $_3$) which				
	dissolves in water to form sulfuric acid (H ₂ SO ₄).				
	2SO;	$_2 + O_2 \rightarrow 2SO_3$				
	SO ₃ +	$H_2O \rightarrow H_2SO_4$				
	Effects of acid rain includes:					
	Acid rain falling on lakes kills fish and o	ther aquatic animals.				
	Acid rain falling on buildings and stone	works can erode these structures.				
	Acid rain falling on soil causes soil to	become acidic and essential mineral salts e.g.				
65	Potassium ions, calcium ions and alumi	nium ions are washed away.				
05						
66	An alkali is a soluble base which produces	hydroxide (OH⁻) ions in water.				
67	Alkalis react with acids to form salt and wat	er only. The reaction is known as neutralisation.				
68	Alkalis react with ammonium compounds o	n heating to give a salt, water and ammonia gas.				
	$Ca(OH)_2(aq) + 2NH_4Cl(s) \rightarrow CaCl_2(aq) + 2l$	$H_2O(I) + 2NH_3(g)$				
69	A strong alkali undergoes complete dissoci	ation (or ionisation) to form hydroxide ions, OH ⁻ ,				
	in water, e.g., NaOH and KOH.					
70	A weak alkali dissolves in water to form a s	mall amount of hydroxide ions, e.g., ammonia.				
	$NH_3(aq) + H_2O(I) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$					
71	An indicator is a substance that has different colours in acidic and alkaline solutions.					
72	pH is a measure of the acidity of an acid or the basicity of an alkali. It is measured when a					
70	substance is dissolved in water.	hand) to form a polt and water only is called				
13	ne reaction of an acid and an alkall (of	base, to form a sail and water only is called				
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$					
74	Acidic oxides are the oxides of non-metals	If they dissolve in water they will form acids				
' -	Acidic Oxide Formula Acid	Produced in Water Foundation				

	Carbon dioxide		CO ₂	Ca	arbonic a	cid, H ₂ CO ₃	$CO_2 + H_2O \rightleftharpoons H_2CO_3$
	Nitrogen dioxide		NO ₂		Nitric ac	id, HNO ₃	$NO_2 + H_2O \rightarrow HNO_3$
	Sulfur dioxide		SO ₂	SO ₂ Sulfurous a		acid, H ₂ SO ₃	$SO_2 + H_2O \rightarrow H_2SO_3$
	Sulfur trioxide		SO ₃	SO ₃ Sulfuric ac		cid, H ₂ SO ₄	$SO_3 + H_2O \rightarrow H_2SO_4$
	Phosphorus(V) oxid	e l	P ₄ O ₁₀	Phe	osphoric	acid, H ₃ PO ₄	P_4O_{10} + $6H_2O$ \rightarrow
							4H ₃ PO ₄
	Silicon dioxide		SiO ₂	Nil	(oxide is	insoluble in	-
					wa	ter)	
75	Basic oxides are oxid	es of n	netals. N	lost b	asic oxid	es are insolub	ble in water, while those that
	dissolve in water forr	n alkali	S.		<u> </u>		
76	Amphoteric oxides a	e meta	allic oxide	s whi	ch can be	ehave as an a	cidic oxide or a basic oxide.
	They react with both	acids a	and bases	s, to fo	orm a sal	t and water.	
	Ampnoteric ox	ae	Form				
)	vvitn ac	:la: ZnO + H ⁺	$\rightarrow Z \Pi^{2+} + H_2 U$
			DhC	<u> </u>		ise: ZnO + OF	$1 + H_2 U \rightarrow [Z \Pi (U H)_4]^2$
		5	PDC)			\rightarrow PD ²⁺ + H ₂ U
		40	A1 C	<u> </u>		$\frac{1}{1}$ $\frac{1}$	$H + H_2 \cup \rightarrow [PD(\cup H)_4]^2$
		Je		Al ₂ O ₃ With acid: Al ₂ O ₃ + H ⁺		$^{\circ} \rightarrow AI^{\circ \uparrow} + H_2 U$	
77	Neutral avidea are r					ase: $AI_2O_3 + O_3$	$\mathcal{H} \rightarrow [AI(OH)_4]$
11	do not react with eith	on-mea or acid	allic oxide	es ina	it exhibit	neither basic	nor acidic properties. They
			Nei	itral o	xide	Formula	
				Wate	r	H ₂ O	
			Carbo	n mo	noxide	CO	
			Nitroge	en mo	onoxide	NO	
78	Step 1: Write	the ch	emical e	quati	on, e.g.,	reaction of	aqueous sodium
	hydrox	ide wit	h dilute h	ydroc	hloric ac	id.	
	NaOU	($(21/2\alpha)$		
	NaOn	(aq) + 1		→ nav	JI(aq) + I	$\Pi_2 O(I)$	
	Step 2: 'Ionise	all th	e aqueo	us sp	ecies (i.	e., those that	t can dissolve in
	Water)		ons. We do this because when, for example, NaOH(s)				
	disson	ves in v	ו water, it breaks down into Na⁺ and OH⁻ ions.				
	Solids	liquids	uids and gases are written in full.				
	Na⁺(ao	I) + O⊦	l⁻(aq) +	I⁺(aq)	+ Cl⁻(aq) → Na⁺(aq) +	- Cl⁻(aq) + H₂O(I)

	 Step 3: Cancel out the 'like' ions on both sides of the equation. They are 'like' because they have not participated in the reaction. We call these spectator ions. Na⁺(aq) + OH⁻(aq) + H⁺(aq) + Cl⁻(aq) → Na⁺(aq) + Cl⁻(aq) + H₂O(I) Step 4: This leaves us with the following equation, comprising the ions on the LHS. This is the ionic equation. We see that the hydroxide ion and the hydrogen ion reacts to form water. State symbols must always be included with ionic equations. 					
		OH⁻(aq) + H⁺(aq) → H₂O	(I)			
79	Solubility tab	le				
		Compounds	Remarks			
	Na⁺,	K ⁺ , NH ₄ ⁺ compounds	All are soluble			
	Nitra	ites (NO ₃ ⁻)	All are soluble			
	Chlo	rides (Cl⁻)	All are soluble except AgCl, PbCl ₂			
	Sulfa	ates (SO ₄ ²⁻)	All are soluble except PbSO ₄ , BaSO ₄ , CaSO ₄			
	Cart	oonates (CO ₃ ²⁻)	All are insoluble except those of Na ⁺ , K ⁺ , NH ₄ ⁺			
	Lead	d(II) compounds	All are insoluble except Pb(NO ₃) ₂			
80	Salts are ionic compounds formed by replacing one or more hydrogen ions of an acid with a					
	metallic ion o	or an ammonium ion (NH ₄ +)				
81	• Salt crystals are often formed by crystallisation from aqueous solutions, and thus often					
	have water molecules bonded to them. This water is known as water of crystallisation.					
	Salts that	contain water of crystallisa	ation are known as hydrated salts.			
02	 Heating a 	a nyurated sait drives away	three feeters:			
02	(1) Solubility	of the salt				
	(2) Reactivity	of the metal.				
	(3) Chemical	s being reacted together to	make the salt.			
83	Insoluble salt	s can be prepared by prec	ipitation.			
84	There are a f	ew ways to prepare a solul	ble salt:			
•	Reacting	an acid with a metal - how	wever, note that we must never use reactive metals			
	(e.g., Na,	K) in the reaction as it will	be explosive.			
	Reacting	an acid with an insoluble b	ase.			
	Reacting	an acid with an insoluble c	arbonate.			
	Reacting	an acid and an alkali (i.e.,	a soluble base) via titration			
85	QA – refer to	QA notes. Everything is in	mportant!			

86	Relative atomic mass, A_r , of an element is the average mass of one atom of the element when compared with $\frac{1}{12}$ of the mass of an atom of carbon-12.					
87	Relative molecular mass, M _r , o	f a molecule is the average	age mass of one molecule	of a		
	substance when compared with 1	I_{12} of the mass of one atom	m of carbon-12.			
88	Relative formula mass, Mr, is the	e average mass of one fo	ormula unit of an ionic compo	ound		
	when compared with $\frac{1}{12}$ of the m	hass of one atom of carbor	า-12.			
89	% of an element = $\frac{A_r \text{ of the element}}{M_r \text{ of the compound}}$	_ × 100%				
90	1 mol = 6.02×10^{23} of particles					
91	number of moles = number of pa	articles				
	6.02×10^{23} (in	n mol ⁻¹)				
92	n number of moles =mass	in g)				
	molar mas	s (in g/mol)				
93	Empirical formula calculation san	nple:	0			
		IVIG	0			
	Mass/ g	0.48	0.32			
	n/ mol	0.48	0.32			
		$\frac{1}{24.3} = 0.0198$	$\frac{10.0}{16.0} = 0.0200$			
	Mole ratio	0.0198 - 1	0.0200 - 1.01≈1			
	(this means to divide	0.0198	0.0198			
	by the smallest n					
	throughout)					
	Simplest mole ratio	1	1			
	Simplest mole ratio	I	I			
	Empirical formula of mag	nesium oxide is MgO.				
94	ONLY FOR GASES! NOT FOR L	IQUIDS!				
	volume of	gas (in dm ³)				
	n, number of moles =24 (in d	$m^3 \text{ mol}^{-1}$)				
95	mass of	solute (in g) number	er of moles of solute (in mol)			
	$\frac{1}{1} = \frac{1}{1} = \frac{1}$					
96	Percentage purity = $\frac{\text{mass of pure substance}}{100\%}$					
	mass of impure substance					
97	Percentage yield = $\frac{\text{actual mass of pure product}}{\text{theoretical mass of pure product}} \times 100\%$					
98	The Group number indicates the	number of valence electro	ons in an atom of an element.	·		
99	The Period number indicates the	number of shells in an ato	om of an element.			
100	Group I					
	Down the Group, the atomic size	e increases and the distar	nce between the nucleus and	d the		
	delocalised electrons increases.	The weaker attraction for	these electrons results in we	aker		
	metallic bonds. Hence melting p	oint decreases down the C	sroup.			

101	Element	Observations				
	Lithium	Reacts quickly with water.				
		$2\text{Li}(s) + 2\text{H}_2\text{O}(I) \longrightarrow 2\text{LiOH}(aq) + \text{H}_2(g)$				
	Sodium	Reacts rapidly with water. Sodium melts into a silvery ball and darts				
		around the water surface. It catches fire and sometimes explodes. The				
		hydrogen gas produced burns with a yellow flame.				
		$2Na(s) + 2H_2O(I) \longrightarrow 2NaOH(aq) + H_2(g)$				
	Potassium	Reacts violently with water. Potassium melts into a silvery ball and darts				
		around the water surface. It catches fire and then expodes. The				
		hydrogen gas produced burns with a lilac flame.				
		$2K(s) + 2H_2O(l) \longrightarrow 2KOH(aq) + H_2(g)$				
100						
102	The halogens ha	ave a simple molecular structure, with the diatomic molecules held together				
	by weak intermol	lecular forces which are easily broken by a small amount of energy. Hence,				
400	they have low me	ening and boiling points.				
103	The belogen me	p. Increases down the Group?				
	I ne nalogen molecules are held together by weak intermolecular forces. The strength of the					
	More energy is required to overcome these forces					
10/	The more reactive balagen can displace the less reactive balagen from an aquieque colution					
104	of its ions e a					
	$Cl_2(q) + 2Kl(aq)$	$\rightarrow 2$ KCl(ag) + l ₂ (ag)				
105	Chemical proper	ties of transition metals				
100	Variable vale	ncy and oxidation states				
	Catalytic pro	perties				
	Formation of	coloured solid compounds and coloured aqueous solutions				
106	A substance is o	xidised when it gains oxygen atom(s) in a reaction.				
100						
	A substance is re	educed when it loses oxygen atom(s) in a reaction.				
107	A cubetanco is o	vidicad when it lesses hydrogen atom(s) in a reaction				
107	A substance is re	educed when it gains bydrogen atom(s) in a reaction.				
108	A substance is oxidised when it loses electron(s) in a reaction					
	A substance is reduced when it gains electron(s) in a reaction.					
109	A substance is o	xidised when the oxidation number of an element in the substance increases				
	after the reaction					
	A substance is re	educed when the oxidation number of an element in the substance decreases				
110		n. mber of hydrogen with non-metals is ≠1				
	The oxidation nu	mber of hydrogen with metals is -1.				
	The oxidation nu	mber of hydrogen in hydrogen molecule is zero				

111	The oxidation number of oxygen as an oxide = -2. The oxidation number of oxygen as a peroxide = -1. The oxidation number of oxygen as a superoxide = $-\frac{1}{2}$. The oxidation number of oxygen as an element is zero Substances that cause oxidation of (oxidised) another substance in a reaction is called an						
440	oxidising agent. Oxidis	sing agents themselve	s are reduced.				
113	reducing agent. Redu	e reduction of (reduction of creduction of c	ed) another substance in a react	ion is called a			
114	Test for Reducing Age	ents					
	Reagent	Observation	Explanation				
	aqueous potassium manganate(VII), KMnO ₄ , acidified by dilute H ₂ SO ₄	Acidified aqueous KMnO₄ turned from purple to colourless.	MnO_4 ⁻ reduced to Mn^{2+} as the oxidation number of Mn decreases from +7 in MnO_4 ⁻ to +2 in Mn^{2+} . Colour of MnO_4 ⁻ (aq) is purple Colour of $Mn^{2+}(aq)$ is pale pink (almost colourless)				
	aqueous potassium dichromate(VI), K ₂ Cr ₂ O ₇ , acidified by dilute H ₂ SO ₄	Acidified aqueous K ₂ Cr ₂ O ₇ turned from orange to green.	$Cr_2O_7^{2-}$ is reduced to Cr^{3+} as the oxidation number of Cr decreases from +6 in $Cr_2O_7^{2-}$ to +3 in Cr^{3+} . Colour of $Cr_2O_7^{2-}$ (aq) is orange Colour of Cr^{3+} (aq) is green				
115	Test for Oxidising Age	nts					
	Reagent	Observation	Explanation				
	aqueous KI, dilute H ₂ SO ₄	Acidified aqueous. KI turned from colourless to reddish brown solution seen.	I ⁻ is oxidised to I ₂ as the oxidation number of I increases from –1 in I ⁻ to 0 in I ₂ .				
		[Note: May observe black solid at the bottom of the test- tube if the amount of iodine present is higher.]					
116	Ν	Nost Reactive	Potassium Paid				
		S	Sodium specialists				
			Calcium can				
			Magnesium make				
Copyrig If you w permiss	tht of chemlectures.sg vish to reproduce this for n sion first through www.cho	nass us ek emlecti sg.	12 of 36	vww.chemlectures.sg Lectures @ Youtube			

			Aluminium	n a
			Zinc	Z00
			Iron	in
			Tin	this
			Lead	ludicrously
			(Hydroger	n) humid
			Copper	country
			Mercury	more
			Silver	special
		Least reactive	Gold	Great!
117	Metal	Observations		Chemical Equation
	Potassium	 Reacts very violently water. A lot of heat is product this causes the hydror produced to catch fire explode. Metal burns with a lila Aqueous potassium h and hydrogen gas are produced. Explodes with steam 	with cold iced and igen gas and ac flame. hydroxide e	2K(s) + 2H ₂ O(l) → 2KOH(aq) + H ₂ (g)
	Sodium	 Reacts violently with water. Hydrogen gas is proceed the gas may catch firme explode. Metal burns with a year flame. Aqueous sodium hyde hydrogen gas are proceed the gas with steam 	cold luced and e and ellow roxide and oduced.	2Na(s) + 2H ₂ O(l) → 2NaOH(aq) + H ₂ (g)

Calcium	• Reacts readily with cold water.	$Ca(s) + 2H_2O(I) \rightarrow Ca(OH)_2(aq) +$
	Metal sinks in water.	H ₂ (g)
	Many bubbles of hydrogen gas	
	are produced.	
	Aqueous calcium hydroxide	
	and hydrogen gas are	
	produced.	
	Water turns milky in colour as	
	calcium hydroxide is partially	
	soluble in water.	
Magnesium	Reacts slowly with cold water.	$Mg(s) + 2H_2O(I) \rightarrow Mg(OH)_2(aq) +$
	A few bubbles of hydrogen gas	H ₂ (g)
	are produced.	
	Aqueous magnesium hydroxide	
	and hydrogen gas are	
	produced.	
	Hot magnesium reacts violently	
	with steam to form magnesium	
	oxide (a white powder) and	
	nydrogen gas. A bright white	$Mg(s) + 2H_2O(g) \rightarrow MgO(s) + H_2(g)$
	glow is produced during the	
	Teaction.	
Zino	- Doos not report with cold water	
	Does not react with cold water:	
	Hot zinc reacts readily with	$Zn(s) + H_2O(a) \rightarrow ZnO(s) + H_2(a)$
	steam. Zinc is yellow when hot	
	and white when cold	
	Solid Zinc oxide and hydrogen das are produced	
Iron	Does not react with cold water	
	Red-hot iron reacts slowly with	$3Fe(s) + 4H_2\Omega(a) \rightarrow Fe_2\Omega_4(s) +$
	steam to form solid iron(II, III)	4H ₂ (a)
	oxide (tri-iron tetroxide) and	-\3/
	No reaction with add water or	
	• NO reaction with cold water of	-
silver		

118	Metal	Observations	Chemical Equation
	Potassium	 Explodes with dilute hydrochloric acid. Aqueous potassium chloride and hydrogen gas are produced. 	$2K(s) + 2HCl(aq) \rightarrow 2KCl(aq) + H_2(g)$
	Sodium	 Explodes with dilute hydrochloric acid. Aqueous sodium chloride and hydrogen gas are produced. 	$2Na(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2(g)$
	Calcium	 Reacts violently with dilute hydrochloric acid. Many bubbles of hydrogen gas are produced. Aqueous calcium chloride and hydrogen gas are produced. 	Ca(s) + 2HCl(aq) → CaCl ₂ (aq) + H ₂ (g)
	Magnesium	 Reacts readily with dilute hydrochloric acid. Many bubbles of hydrogen gas are produced. Aqueous magnesium chloride and hydrogen gas are produced. 	Mg(s) + 2HCl(aq) → MgCl ₂ (aq) + H ₂ (g)
	Zinc	 Reacts readily with dilute hydrochloric acid. Many bubbles of hydrogen gas are produced. Aqueous zinc chloride and hydrogen gas are produced. 	$Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$
	Iron	 Reacts slowly with dilute hydrochloric acid. Bubbles of hydrogen gas are produced. Pale green aqueous iron(II) chloride and hydrogen gas are produced. 	Fe(s) + 2HCl(aq) → FeCl ₂ (aq) + H ₂ (g)
	Lead, copper, silver	Does not react with dilute hydrochloric acid.	-
119	Metal	Observations	Chemical Equation
	Potassium	Some heat applied results in a very vigorous reaction.	$2K(s) + O_2(g) \rightarrow 2K_2O(s)$

	A lot of Metal Solid powde Sodium Some		f heat is given out.burns with a lilac flame.botassium oxide (a whiteer) is produced.heat applied results in a $2Na(s) + O_2(g) \rightarrow 2Na_2O(s)$			→ 2Na ₂ O(s)			
			very v • A lot • Metal flame • Solid	rigorous reaction. of heat is given out. burns with a yellow sodium oxide (a white er) is produced.					
	Calcium	۱,	Strong	g heat applied to	o start		$2Ca(s) + O_2(g)$	\rightarrow 2CaO(s)	
	magnes	sium,	reacti	on.					
	zinc • A lo		A lot o	of heat is given o	out.		$2NIG(S) + O_2(G)$	$\rightarrow 2 \text{MgO}(s)$	
	White Magr brillia		solids are produ esium burns with nt white flame.	uced. h a		2Zn(s) + O ₂ (g)	→ 2ZnO(s)		
	Iron • Stron react • Glow white		 Strong reaction Glows white 	g heat applied to start on. s red hot and burns with sparks.		$3Fe(s) + 2O_2(g) \rightarrow Fe_3O_4(s)$			
	Lead, c	opper	Strong	 Strong heat applied to start 			$2Pb(s) + O_2(g) \rightarrow PbO(s)$		
			reaction	on.		$2Cu(s) + O_2(g) \rightarrow 2CuO(s)$			
	Gold, si	lver	No real	action occurs.		-			
120	Metal	Арр	earance	Water on Metal	Acids o Metal	n	Air or Oxygen on Metal	Displacement Reactions	
	K	Dul	l, stored	React with	Hydroge	en .	Burn in air or	Each metal will	
	Ca	un		decreasing ease)	gas produ (with decreasi	cea na	oxygen	metal lower in the series from	
	Mg			React with	ease)	0		as solution of	
	AI			steam when				one of its salts.	
	Zn	Gene	erally dull	heated					
	Fe Sn Pb								
				No reaction			into oxide by		
	Cu			water	React wi	ith	heating in air		
	Ha				oxidisin	g	(without		
		_			acids		burning)		
	Ag	Ge	enerally						
	Au		ышу						

						No reaction	Unaffecte	ed
	Pt					with acids	by air o	r
							oxygen	
121	Compound	ds formed b	by read	ctive	e metals ar	e more stable t	o heat than	those formed by less
	reactive m	netals.		- 1				
122			Meta	al		Carbonates		-
			K			Stable to heat		
			Na	a				
			Ca	à	Decompo	se to metal oxid	le and	-
			Mg)	carbon di	oxide gas on he	ating.	
			Al					
			Zn)	Example:			
			Fe	;	PbCO ₃ (s)	\rightarrow		
			Sn	١	PbO(s) +	CO ₂ (g)		
			Pb)				
			Cu	1				
			Hg)	Unstable,	do not exist		
			۵a	1	For silver	carbonate Ad ₂	CO₂ it	
			/\y	,	decomposes into silver and carbon			
			Au	I	dioxide on heating.			
						Ū		
			Pt					
		_						
123	Oxide	Action o	f Heat		Ac	tion of Hydroge	n	Action of Carbon
	of							
	K	No reaction	on			No reaction		No reaction
	Na							
	Ca Ma							
	ΔΙ	-						
	7n	4						Reduced to metal
	Fe	1		F	Reduced to	metal		(with increasing
	Sn	1		((with increa	ising ease)		ease)
	Pb	1				<i>,</i>		
	Cu	1		E	Example:			Example:
	Hg	Decompo	se to	0	CuO(s) + 3	$H_2(g) \rightarrow Cu(s)$ +	- H ₂ O(I)	$2CuO(s) + C(s) \rightarrow$
	Ag	give meta	l and					$2Cu(s) + CO_2(g)$
	Au oxygen							
	Pt							
		Example:						
		$2Ag_2U(S)$	\rightarrow					
		+4Ag(s) + (J ₂ (g)			47 -6 00		www.chamlactures.co
CODVIIO	int of chemie	ectures.sa				1/ OT 30		www.cnemiectures.sg

124		Metal	Main Ore	Main Chemical Constituent	Extraction Method	Ease of Extraction	
		K	Carnallite	KMgCl ₃	Electrolytic reduction.		
		Na	Rock salt	NaCl		Hardest	
		Са	Chalk,	CaCO₃		\land	
			limestone				
		Mg	Dolomite	CaMg(CO ₃) ₂			
		AI	Bauxite	Al_2O_3			
		Zn	Zinc blende	ZnS	Extraction by reducing		
		Fe	Haematite	Fe ₂ O ₃	with		
		Sn	Tinstone	SnO ₂	carbon in a furnace.		
		Pb	Galena	PbS			
		Cu	Copper	CuFeS ₂			
			pyrites				
		Hg	Cinnabar	HgS			
		Ag	-	Ag			
		Au	-	Au	Found free	Fasiest	
					(unbounded) in the	Eddloot	
405	Extract	tion of iro	<u> </u>		ground.		
	 Ma Iroi the 	in ore: Ha n is extrac	aematite, iron() cted in a blast f while hot air is	III) oxide mixed furnace. Iron or	with impurities such as sa e, coke and limestone is a r the bottom	nd and clay. dded from the	top of
	the Sta Co rea C(s Sta The Sta The Fe ₂ Oth	furnace v age 1 ke reacts action. Te s) + $O_2(g)$ age 2 e carbon of endothern $O_2(g)$ + $C(s)$ age 3 e carbon bottom of $_2O_3(s)$ + 3 her reaction	while hot air is emperatures can $\rightarrow CO_2(g)$ dioxide formed nic and temper s) $\rightarrow 2CO(g)$ monoxide redu of the blast furn sCO(g) $\rightarrow 2Fe($	from the air to an reach 1900 of reacts with mor ature drops to a lices the iron(III) liace.	r the bottom. • form carbon dioxide in a C. • coke to form carbon mon about 1100 °C. • oxide to produce molten i	a highly exot	hermic eaction

18 of 36

	(1) Limestone added is decomposed by the heat to produce basic calcium oxide (lime)
	and carbon dioxide.
	$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$
	Iron contains many impurities such as silicon, sulfur and phosphorus. Silicon is present as silicon dioxide (sand), an acidic oxide. SiO ₂ reacts with CaO to produce slag, calcium silicate, CaSiO ₃ . Slag collects at the bottom of the furnace and floats on top of the molten iron.
	$CaO(s) + SiO_2(s) \rightarrow CaSiO_3(I)$
	Hot waste gases such as carbon monoxide, carbon dioxide and nitrogen escape from
	the top of the furnace.
126	For rust to form, iron, water and oxygen must be present.
407	
127	 (1) Iron reacts with water and oxygen (in the air) to form iron(II) hydroxide. In this reaction, iron is oxidised while water is reduced.
	$2Fe(s) + O_2(g) + 2H_2O(I) \rightarrow 2Fe(OH)_2(s)$
	(2) Iron(II) hydroxide reacts with more oxygen and water to form iron(III) hydroxide.
	$4Fe(OH)_2(s) + O_2(g) + 2H_2O(I) \rightarrow 4Fe(OH)_3(s)$
	(3) Iron(III) hydroxide loses some water to become rust. Rust is hydrated iron(III) oxide, written as Fe2O3.xH2O as they amount of water can vary.
	$Fe(OH)_3(s) \rightarrow Fe_2O_3.xH_2O$
	(4) Overall equation
	$4Fe(s) + 3O_2(g) + 2xH_2O(I) \rightarrow 2Fe_2O_3.xH_2O(s)$
128	Rust is flaky and peels off easily, allowing iron underneath to rust. This is unlike aluminium
	oxide which forms an impervious layer on the surface of aluminium, preventing further
	reaction.
129	Rusting is faster when the iron is in contact with a piece of metal that is less reactive than
	itself.
130	The Haber process reaction is as follows:
	$N_{12}(\alpha) \pm 3H_{2}(\alpha) \Longrightarrow 2NH_{2}(\alpha)$
	Conditions: 250 atm. 450 °C. finely divided iron as catalyst
	Note:
	The Haber process reaction is reversible.
Copyrig If you w	rish to reproduce this for mass use seek IP OF 30 Www.crientectures.sg Chem Lectures @ Youtube

permission first through www.chemlectures.sg.

	 It is exothermic. 				
	•	Reaction takes p	lace under high temperature and high pressure.		
	•	Only about 10-15	5% of the reactants are converted into ammonia.		
	• Wh	y high pressure (2	250 atm)?		
	•	Increasing the pr	essure favours the forward reaction. The speed of the forward		
	•	However, too hig	h a pressure is costly to maintain because expensive		
		equipment is required. Hence, there is a	ured. compromise on the pressure used for the reaction. 250 atm is		
		used.			
	• Wh	y the temperature	e of 450 °C?		
	•	This is because t reduced.	he decomposition of ammonia through the backward reaction is		
	•	However, too low Hence, a relative	v a temperature will reduce the rate of the forward reaction. Iy high temperature of 450 °C is used.		
	10/1-	u de la Create alla data			
	• vvn	y the finely divide	d Iron catalyst?		
	•	Despite the high	pressure and relatively high temperature, the overall reaction is		
	•	A catalyst is used	d to speed up the reaction. It does not affect the yield.		
404	Other Deer	ationa ta Obtain A			
131		ting a mixture of a	Annonia an ammonium salt and an alkali or base		
	• By field	NH₄Cl(s) + NaOH(aq) \rightarrow NaCl(aq) + H ₂ O(l) + NH ₃ (g)		
		•			
	Note: Conc	centrated sulfuric	acid cannot be used because it reacts with ammonia gas:		
400	∏ a utilia a ua		$2NH_3 + H_2SO_4 \to (NH_4)_2SO_4$		
132	Fertilisers	Nitrogen (NI)	for healthy green stems and		
		Nillogen (N)	leaves: for increase in protein		
			content of plants and size of crop		
		Dhoonhorus			
		(P)	for good root growth		
		(,)			
		Potassium (K)	for flower and fruit formation;		
			helps plant to photosynthesise.		
133	An exother	mic reaction is a	reaction where energy is given out to the surroundings.		
134	An endothe	ermic reaction is a	a reaction where energy is absorbed from the surroundings.		
135	Activation	energy (E _a) is th	e minimum energy required to be possessed by the reactant		
	particles in	order for a chem	ical reaction to occur.		

136	Overall enthalpy total energy absorbed	for bond total energy released during					
	change (ΔH) breaking	bond forming					
	• If more energy is absorbed than release	d (e.g., 1000 kJ – 500 kJ), overall enthalpy					
	change > 0, i.e., endothermic reaction. If more operative released than absorbed (e.g. $500 \text{ k} = 1000 \text{ k}$), everall onthalow change						
	< 0, i.e., exothermic reaction.						
137	Hydrogen fuel cell						
	At the positive electrode	At the negative electrode					
	Oxygen is reduced to form hydroxide ions Hydrogen is oxidised to form water						
	$O(\sigma) + 2U(O(l) + 4\sigma + 4O(l/\sigma))$						
	$O_2(g) + 2\Pi_2O(1) + 4e \rightarrow 4O\Pi (aq)$	$\Pi_2(g) + 2\Theta\Pi (aq) \rightarrow 2\Pi_2\Theta(l) + 2e$					
	Overall reaction is the conversion of hydroge	en and oxygen into water with the release of					
	electrical energy.						
	$2H_2(g) + O_2(g)$	$g) \rightarrow 2H_2O(I)$					
138	 Increase in concentration of reactants increase 	eases the number of reactant particles per unit					
	volume.						
	The frequency of collisions increases, a application the append of the abamic	nd this increases the frequency of effective					
139	 When the particle size decreases, the su 	face area of the reactant increases, giving a					
	larger surface area to volume ratio.						
	More surfaces are exposed for reactant p	articles to collide, increasing the frequency of					
	Collisions.	e collisions, hence increasing the speed of					
	reaction.	e considers, hence increasing the speed of					
140	Increasing the pressure increases the num	ber of particles per unit volume of the gas.					
	The collisions between the gas particles frequency of effective collisions, increasing	become more frequent. This increases the					
141	 Increase in temperature increases the spe 	ed of a chemical reaction.					
	The particles move faster and they posses	s more kinetic energy.					
	This increases the likelihood that they colli	de with sufficient or more than enough energy					
	to overcome activation energy.	access increasing the aread of the chemical					
	reaction.	eases, increasing the speed of the chemical					
142	A catalyst is a substance which increases th	e speed of a chemical reaction and remains					
	chemically unchanged at the end of the reaction	on.					
	 Only a small amount is required as it is not A catalyst is not used up during the chemic 	t chemically changed.					
	 A catalyst is not used up during the chemic A catalyst is selective and different reaction 	ns require different catalysts.					
	 A catalyst increases the speed of a reaction 	n but not the yield of the reaction.					
Copyric	abt of chemlectures sa 2	1 of 36 www.chemlectures.sg					

	 A catalyst can be poisoned by impurities, and no longer works or become less effective as a catalyst. 						
143	 Catalysis are usually transition metals of their compounds. Enzymes are biological catalysts Enzymes are proteins. Enzymes are substrate specific. Enzymes are sensitive to temperature changes. Enzymes are sensitive to pH changes. 						
144		Carbon monoxide	Nitrogen oxides (NO, NO ₂)	Sulfur dioxide			
	A. B.	 Source From incomplete combustion of fuels in vehicles and industry Harmful Effects Colourless, odourless gas prevents easy detection. CO combines with haemoglobin in the blood to form stable carboxyhaemoglobin, preventing the haemoglobin from transporting oxygen to body cells, depriving them of oxygen. Prevention/Removal Catalytic converters to remove CO in vehicles by oxidising it into CO2. 	A. Source Nitrogen and oxygen in the air combine to form nitrogen monoxide at higher temperatures in car engines and power stations/ presence of lightning. N₂(g) + O₂(g) → 2NO(g) NO is further oxidised to form NO₂. 2NO(g) + O₂(g) → 2NO₂(g) 	A. Source - During combustion of fossil fuels such as coal and petroleum which contain sulfur as impurity - Volcanic eruptions - Extraction of iron in blast furnace when the sulfur impurities are oxidised off. S(s) + O ₂ (g) → SO ₂ (g) B. Harmful Effects - Irritates the eyes and causes breathing problems. - Enters leaves and affects the growth of plants.			
		Into CO ₂ .	 B. Harmful Effects NO₂ is highly corrosive and toxic. It irritates lungs, breathing passages, and eyes. Oxides of nitrogen leads to the formation of acid rain and photochemical smog. 	 Main cause of acid rain. C. Prevention/Removal Removal of SO₂ from flue gases. CaO or Ca(OH)₂ is added to neutralise excess acidity in lakes and soil. 			

		C. Prevention/Removal - Catalytic converters to remove NO, NO ₂ , as N ₂ .	
	Unburnt Hydrocarbons	Methane	Ozone
	 A. Source Come mainly from hydrocarbons in fuel that have not been burnt in vehicle engines. B. Harmful Effects Some can cause cancer, they can react with sunlight and other pollutants to form photochemical smog. 	 A. Source Produced when plant and animal matter decay. Cows and other farm animals also produce methane. B. Harmful Effects Contributes to global warming. 	 A. Source O₃, a form of oxygen and colourless. Sunlight acts on air and the pollutants such as nitrogen dioxide, carbon monoxide and hydrocarbons to produce photochemical smog. Ozone is part of this mixture.
			 B. Harmful Effects Irritates the eyes, nose and throat and can cause asthma attacks. It damages plant crops.
145	Reducing Sulfur Dioxide Emis Step 1: Limestone (calcium calcium calcium) carbonate to decompose to calcium)	arbonate) added to hot flue (arbonate) added to hot flue (ium oxide and carbon dioxide.	gases. Heat causes calcium
	C	$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$	
	Step 2: Calcium oxide reacts of oxidised by oxygen in air to form	with sulfur dioxide to form can calcium sulfate.	llcium sulfite, which is further
	2C	CaO(s) + SO ₂ (g) → CaSO ₃ (s) CaSO ₃ (s) + O ₂ (g) → 2CaSO ₄ (s)
146	Electrolysis of molten NaCl		
	Identify electrolyte: NaC <i>l</i> (I) In solid state, the ions are held forces of attraction	in fixed positions in the crystal	lattice by strong electrostatic
	Identify ions present: Na+(I) a	and CI ⁻ (I)	
Copyrig	ht of chemlectures.sg	23 of 36	www.chemlectures.sc Chem Lectures @ Youtube

If you wish to reproduce this for mass use, seek permission first through **www.chemlectures.sg**.

			Cations	Anions			
		From sodium chloride	Na⁺(aq)	C <i>l</i> ⁻(aq)			
		From water	H⁺(aq)	OH⁻(aq)			
]		
	 Step 2: Determine negative terminal of Positively charge H⁺(aq) is more ea H⁺(aq) is prefere 	ion preferentially discharge battery) ed ions will migrate to cathoo asily discharged over Na ⁺ (a ntially discharged as hydrog	ed at the c de: Na⁺(aq), q). gen gas.	athode (ele H ⁺ (aq)	ctrode connected		
		$2H^+(aq) + 2e^- \rightarrow H_2$	g(g) [reduct i	ion]			
	 Na⁺(aq) remains in solution. 						
	 Step 3: Determine ion preferentially discharged at the anode (electrode connected to positive terminal of battery) Negatively charged ions will migrate to anode: Cl⁻(aq), OH⁻(aq) OH⁻(aq) is more easily discharged compared to Cl⁻(aq). OH⁻(aq) is preferentially discharged as water and oxygen gas. 						
		$4OH^{-}(aq) \rightarrow 2H_2O(I) + O_1$	₂(g) + 4e⁻ [o	xidation]			
	 Cl⁻(aq) remains i 	n solution.					
	Overall						
	 2H₂O(I) <u>electrolysis</u> 2H₂(g) + O₂(g) Equivalent to electrolysis of water. As electrolysis proceeds, concentration of sodium chloride will increase. This would affect 						
150	Electrolysis of con	centrated NaCl (brine)					
	Step 1: Identify the i	ons present in the electrolyt	e				
			Cations	Anions			
		From sodium chloride	Na⁺(aq)	C <i>l</i> ⁻(aq)			
	From water H ⁺ (aq) OH ⁻ (aq)						
 Step 2: Determine ion preferentially discharged at the cathode (electrode connected to negative terminal of battery) Positively charged ions will migrate to cathode: Na⁺(aq), H⁺(aq) 							

 H⁺(aq) is preferentially discharged as hydrogen gas. 2H⁺(aq) + 2e⁻ → H₂(g) [reduction] Na⁺(aq) remains in solution. (Metal ions are never discharged from aque solutions.) Step 3: Determine ion preferentially discharged at the anode (electrode connected to pos terminal of battery) Negatively charged ions will migrate to anode: Cl⁻(aq), OH⁻(aq) 			
 2H⁺(aq) + 2e⁻ → H₂(g) [reduction] Na⁺(aq) remains in solution. (Metal ions are never discharged from aque solutions.) Step 3: Determine ion preferentially discharged at the anode (electrode connected to pos terminal of battery) Negatively charged ions will migrate to anode: Cl⁻(aq), OH⁻(aq) 			
 Na⁺(aq) remains in solution. (Metal ions are never discharged from aque solutions.) Step 3: Determine ion preferentially discharged at the anode (electrode connected to pos terminal of battery) Negatively charged ions will migrate to anode: Cl⁻(aq), OH⁻(aq) 			
 Na⁺(aq) remains in solution. (Metal ions are never discharged from aque solutions.) Step 3: Determine ion preferentially discharged at the anode (electrode connected to pos terminal of battery) Negatively charged ions will migrate to anode: Cl⁻(aq), OH⁻(aq) 			
 Step 3: Determine ion preferentially discharged at the anode (electrode connected to pos terminal of battery) Negatively charged ions will migrate to anode: Cl⁻(aq), OH⁻(aq) 			
\square			
concentrated solutions, <i>Cl</i> ⁻ (aq) is preferentially discharged instead. (Halide ions s as chloride, bromide and iodide ions are only discharged during the electrolysi			
concentrated solutions.)			
$2 Cl^{-}(aq) \rightarrow Cl_{2}(aq) + 2e^{-}$ [oxidation]			
OH ⁻ (ag) remains in solution			
151 Electrolysis of dilute sulfuric acid			
Step 1: Identify the ions present in the electrolyte			
Cations			
From sulfuric acidH+(aq)SO42-(aq)			
From waterH⁺(aq)OH⁻(aq)			
 Step 2: Determine ion preferentially discharged at the cathode (electrode connected to negative terminal of battery) Only positively charged ion which migrates to cathode: H⁺(aq) H⁺(aq) is discharged as hydrogen gas. 2H⁺(aq) + 2e⁻ → H₂(g) [reduction] 			
Step 3: Determine ion preferentially discharged at the anode (electrode connected to positive terminal of battery)			
 OH⁻(ag) is more easily discharged compared to SO₄²⁻(ag). 			
 OH⁻(aq) is preferentially discharged as water and oxygen gas. 			
$4OH^{-}(aq) \rightarrow 2H_2O(I) + O_2(g) + 4e^{-}$ [oxidation]			
 SO₄²⁻(aq) remains in solution. 			
Overall			
• $2H_2O(I) \xrightarrow{\text{electrolysis}} 2H_2(g) + O_2(g)$			
Copyright of chemlectures.sg 26 of 36 www.chemlectures.g			

If you wish to reproduce this for mass use, seek permission first through www.chemlectures.sg.

152	Electrolysis of aqueous copper(II) sulfate with INERT electrodes					
	Step 1: Identify the ions present in the electrolyte					
			Cations	Anions		
		From copper(II) sulfate	Cu ²⁺ (aq)	SO ₄ ²⁻ (aq)		
	From water H ⁺ (aq) OH ⁻ (aq)					
	 Step 2: Determine ion preferentially discharged at the cathode (electrode connected to negative terminal of battery) Positively charged ions will migrate to cathode: H⁺(aq), Cu²⁺(aq) Cu²⁺(aq) is more easily discharged compared to H⁺(aq). Cu²⁺(aq) is preferentially discharged as Cu(s). Cu²⁺(aq) + 2e⁻ → Cu(s) [reduction] Step 3: Determine ion preferentially discharged at the anode (electrode connected to positive terminal of battery) Negatively charged ions will migrate to anode: SO₄²⁻(aq), OH⁻(aq) OH⁻(aq) is more easily discharged as water and oxygen gas. 4OH⁻(aq) → 2H₂O(I) + O₂(g) + 4e⁻ [oxidation] SO₄²⁻(aq) remains in solution. 				ctrode connected to	
					connected to positive	
	 The copper metal discharged forms a layer around the cathode. The concentration of Cu²⁺(aq) in the solution decreases as the reaction proceeds. The intensity of the blue colour decreases. 					
153	Electrolysis of aqueous copper(II) sulfate using COPPER electrode					
	Step 1: Identify the ions present in the electrolyte					
			Cations	Anions		
		From copper(II) sulfate	Cu ²⁺ (aq)	SO ₄ ²⁻ (aq)		
	From waterH+(aq)OH-(aq)					
	 Step 2: Determine ion preferentially discharged at the cathode (electrode connected to negative terminal of battery) Positively charged ions will migrate to cathode: H⁺(aq), Cu²⁺(aq) Cu²⁺(aq) is more easily discharged compared to H⁺(aq). 				ctrode connected to	
Copyright of chemlectures.sg27 of 36www.chemlectures.sgIf you wish to reproduce this for mass use, seekChem Lectures @ Youtubepermission first through www.chemlectures.sg.Voutube						

28 of 36

www.chemlectures.sg Chem Lectures @ Youtube

155	Electroplating			
	 The metal to be used for electroplating is made the anode. The object to be plated is made the cathode. For copper plating for example, Copper is used as the anode. The electrolyte is aqueous copper(II) sulfate. Copper from the electrolyte is deposited on the object, while copper from the anode replaces the Cu²⁺(aq) in the electrolyte. 			
	Cathode: $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$ Anode: $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$			
156	Zinc-copper cell with dilute sulfuric acid a	s electrolyte		
	 Step 1: Identify which electrode is oxidised. Reduction will occur at the other electrode. The more reactive metal will be oxidised. In this case, Zn is more reactive than Cu. Hence Zn is oxidised. Step 2: Identify the flow of electrons. 			
	Electrons flow from the negative electrode to	the positive electrode.		
	At the zinc electrodeAt the copper electrode			
	• Zinc atoms are oxidised. They give up electrons to form zinc ions.	The electrons from the zinc electrode travel to the copper electrode.		
	$Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$	 The solution contains both Na⁺(aq) and H⁺(aq) ions. 		
	 Because zinc gives up electrons, it behaves as the negative electrode. The zinc ions enter into solution. 	 H⁺(aq) is more easily discharged. H⁺(aq) accepts the electrons and is reduced to form hydrogen gas. 		
		$2H^+(aq) + 2e^- \rightarrow H_2(g)$		
	Overall redox reaction: Zn(s	$\frac{1}{s} + 2H^{+}(aq) \rightarrow Zn^{2+}(aq) + H_{2}(g)$		
157	Zinc-copper cell with aqueous copper(II) s	ulfate as electrolyte		
	Step 1: Identify which electrode is oxidised.	Reduction will occur at the other electrode.		
	The more reactive metal will be oxidised. In this case, Zn is more reactive than Cu. Hence Zn is oxidised.			

Step 2: Identify the flow of electrons.

Electrons flow from the negative electrode to the positive electrode.

	At the zinc electrode	At the conner electrode		
		At the copper electrode		
	Zinc atoms are oxidised. They give up electrons to form zinc ions.	• The electrons from the zinc electrode travel to the copper electrode.		
	$Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$	 The solution contains both Cu²⁺(aq) and H⁺(aq) ions. 		
	 Because zinc gives up electrons, it behaves as the negative electrode. 	 Cu²⁺(aq) is more easily discharged. Cu²⁺(aq) accepts the electrons and is reduced to form Cu metal. 		
	The zinc ions enter into solution.			
		$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$		
	Overall redox reaction: $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$			
158	The voltage reading depends on the difference in reactivity between the two metals used for the electrodes.			
159	Hydrocarbons = compounds made up of only C and H			
160	 0 A homologous series is a group of compounds with a general formula, similar chemical properties and showing a gradation in physical properties as a result of increase in the size and mass of the molecules, e.g. melting and boiling points, viscosity, flammability. Members have the same general formula; each member differs from the next by a – CH₂– group of atoms. Have chemical properties which are very similar for each member (since they have the same functional group) Have physical properties which show a steady gradation on going down the series. Can be made by similar methods. 			
161	Alkanes form a homologous series consists of saturated hydrocarbons with the general formula C_nH_{2n+2} . Each subsequent alkene varies by a -CH ₂ - group. Alkanes are compounds contain only carbon-carbon single covalent bonds (C–C) and carbon-hydrogen single covalent bonds (C–H).			
162	Isomers are compounds with the same molec	cular formula but different structural formula.		
163	The melting point and boiling point of the mass increases . More energy is required to attraction between the alkane molecules.	alkanes increases as the relative molecular overcome the stronger van der Waals forces of		
164	Alkanes can react with chlorine in the presence	e of UV light, e.g., methane with chlorine.		
Copyrig	l pht of chemlectures.sg	0 of 36 www.chemlectures.sg		

300 °C, 60 atm

Copyright of chemlectures.sg If you wish to reproduce this for mass use, seek permission first through **www.chemlectures.sg**. 31 of 36

	н н	l	н он 	
	`c=ć	+ HOH	► HĊH	
	н́ н́	l		
170	Polymerisation of alkenes			
	high temperature and pressure			
	ethene _	catalyst	ethane	
	h	igh temperature and pressure		
	$n(CH_2=CH_2) \longrightarrow -(CH_2CH_2)_n - catalyst$			
	$n (c = c') \rightarrow (c - c' -$			
	∖н	н/ \	н́н́/ _n	
171	Cracking			
	• Alkenes are manufactured by the cracking of hydrocarbons. Long-chain hydrocarbons			
	are broken down into short-chain hydrocarbons.			
	hexane \rightarrow butane + ethane			
	$C_6H_{14} \rightarrow C_4H_{10+}C_2H_4$			
	• A catalyst and high temperatures can be used to speed up the cracking process, i.e., catalytic cracking.			
	Catalyst: aluminium oxide (Al_2O_3) and silicon dioxide (SiO ₂)			
	Temperature: 600 °C			
	long-chain alkane \rightarrow (mixture of short-chain alkenes) + (mixture of short-chain alkanes			
		or H ₂)		
172		Alkanes	Alkenes	
	Similarities	 Contains carbon and hydrogen only Elammable 		
		3. Complete combustion produces carbon dioxide and		
	Differences	Only single covalent	At least one double	
		atoms	covalent bond between carbon atoms	
		 Generally unreactive Undergoes substitution 	More reactive than alkanes	
		reaction		

			Undergoes addition reaction	
		 Does not decolourise reddish-brown bromine water 	Decolourises reddish- brown bromine water.	
		 Small-chain alkanes burn cleanly 	Alkenes of similar length of carbon chain burns with a smokier flame	
173	Alcohols form a homologous series containing the –OH functional group or hydroxyl group,			
174	with the general formula $C_nH_{2n+1}OH$.			
	such as ethanol by micro-organisms such as yeast, e.g., fermentation of glucose to form ethanol.			
		yeast, 37 °C		
	C ₆ H ₁₂ O ₆ (aq) — 2CH	H₃CH₂OH(aq) + CO₂(g)	
	aluanan	yeast, 37 °C	aal Laarban diavida	
	giucose			
	 The mixture of yeast and glucose is kept at 37 °C as this is the optimum temperature for enzymes in yeast to function. To high a temperature and the enzymes in yeast will be denatured and cannot function as catalysts. Carbon dioxide is released during fermentation. Hence frothing is observed in the flask. 			
	 A while precipitate also forms in limewater. Fermentation is carried out in the absence of oxygen. When there is oxygen present, little 			
	to no ethanol is produced. Oxygen can also oxidise ethanol into ethanolc acid.			
	$CH_{3}CH_{2}OH(aq) + O_{2}(g) \rightarrow CH_{3}COOH(aq) + H_{2}O(I)$			
	• A dilute solution of ethanol is formed. It is only about 15% concentrated. Above this concentration, the yeast dies and fermentation stops. Ethanol is separated from the mixture by fractional distillation.			
175	Main industrial method of produ	icing ethanol.		
	phosphoric(V) acid (H ₃ PO ₄)			
	$C_2H_4(g) + H_2O(g) \xrightarrow{300 \circ C} 60 \text{ atm} > CH_3CH_2OH(aq)$			
	500°C, 00 am			
	phosphoric(V) acid (H ₃ PO ₄)			
	ethene + steam			
176	Alcohols can be oxidised into ca such as acidified potassium ma	rboxylic acids by warming the nganate(VII), e.g., ethanol to	m with suitable oxidising agents ethanoic acid.	
	During this reaction, purple acic	lified potassium manganate(V	/II) is decolourised.	

