Wave Motion

Progressive W	aves - energy is	transferred in th	he propagation	of the wave
----------------------	------------------	-------------------	----------------	-------------

Both graphs can be describing longitudinal (oscillation of medium along the propagation) or transverse (oscillation of medium perpendicular to the propagation) waves.

Wave Equation	$f = v \frac{1}{\lambda}$	 Frequency is inversely proportional to wavelength Speed of wave is constant and is affected by change in medium or temperature.
Phase Difference	$\Delta \phi = \frac{\Delta t}{T} \times 2\pi$ $\Delta \phi = \frac{\Delta d}{\lambda} \times 2\pi$	 Time lapse (Δt) out of the period, T Distance between two points in a wave (Δd) out of the wavelength, λ
Intensity of wave (determines brightness of light and loudness of sound)	$I \propto a^2$	• Intensity at a point is proportional to the square of the amplitude of the wave at that point.
Intensity a point source	$I = \frac{P}{4\pi r^2}$ $I \propto \frac{1}{r^2}$	 Intensity is the wave energy incident per unit time per unit area normal to the direction of travel of the wave. Area incident of a point source is the area of a sphere.

Polarisation

Calibrated Oscilloscope

Wavelength Measurement

(See summary sheet for Superposition)