Chapter 7 (Pure Mathematics): Integration Techniques

Objectives:

At the end of the chapter, you should be able to

- (a) understand that integration is the reverse of differentiation
- (b) find the integral of x^n , for any rational n, and, e^x , together with constant multiples, sums and differences
- (c) find the integral of $(ax+b)^n$, for any rational n, and $e^{(ax+b)}$

Content

- 7.1 Introduction
- 7.2 Definition
 - 7.2.1 Basic Properties of Indefinite Integral
- 7.3 Integrate Basic Functions
 - 7.3.1 Integrate Algebraic Functions
 - 7.3.2 Integrate Exponential Function
- 7.4 Miscellaneous Examples

References

- 1. New Additional Mathematics, Ho Soo Thong (Msc, Dip Ed), Khor Nyak Hiong (Bsc, Dip Ed)
- 2. New Syllabus Additional Mathematics (7th Edition), Shinglee Publishers Ptd Ltd

7.1 Introduction

If you have the gradient function $\frac{dy}{dx} = 2x + 5$ and some related information, can you find the equation of the curve y? The answer is yes. The process of getting y from $\frac{dy}{dx}$ is called Integration, also sometimes known as anti-differentiation.

Example 1

Given the gradient function $\frac{dy}{dx} = 2x$, find the general equation of y.

Solution:

We know that if we differentiate x^2 , we will get 2x. Hence $y = x^2$.

But this is not the complete picture, because if you differentiate $x^2 + 1$, you will also get the same answer, 2x. The same is true for $y = x^2 + 2$.

In fact if you differentiate x^2 plus any constant, you get the same answer.

Therefore
$$\frac{dy}{dx} = 2x \implies y = x^2 + C$$
, where C is an arbitrary constant.

This reversal of differentiation, known as integration, is represented as follows:

$$\int 2x \, \mathrm{d}x = x^2 + C$$

C is the "Constant of Integration". It is there because of **functions whose derivative are 2x is not unique.** For example, $\frac{d}{dx}(x^2-4)=2x$; $\frac{d}{dx}(x^2+20)=2x$, etc...

7.2 Definition

Integration is the reverse process of Differentiation.

If
$$\frac{d}{dx}F(x) = f(x)$$
, then

Integral symbol

Function we want to integrate

Integral to integrate

Variable to integrate

where $\frac{dF(x)}{dx} = f(x)$ and C is an arbitrary constant.

7.2.1 Basic Properties of Indefinite Integral

Let f and g be two functions. Then,

- 1. $\int k \, dx = kx + C$, where C is an arbitrary constant
- 2. Multiply function by constant: $\int kf(x) dx = k \int f(x) dx$
- 3. Sum and Difference of functions: $\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$

7.3 Integrate Basic Functions

7.3.1 Integrate Algebraic Functions

Recall when we differentiate x^n , we multiply by the number in the power and reduce the power by 1. i.e. $\frac{d(x^n)}{dx} = nx^{n-1}$

In integration, we raise the power by 1 and divide by n+1. See (a)

Note: For (a) to (d) below, C represents an arbitrary constant.

	Common functions	Function	Integral
(a)	Power where $n \neq -1$	$\int x^n dx$	$=\frac{x^{n+1}}{n+1}+C, n\neq -1$
		$\int (ax+b)^n dx$	$=\frac{\left(ax+b\right)^{n+1}}{a(n+1)}+C, n \neq -1$
(b)	Constant	$\int k \mathrm{d}x = \int kx^0 \mathrm{d}x$	=kx+C

Special Case (when power n = -1)

(c)	Power where $n = -1$	$\int x^{-1} \mathrm{d}x = \int \frac{1}{x} \mathrm{d}x$	$=\ln x +C$
(d)		$\int (ax+b)^{-1} dx = \int \frac{1}{ax+b} dx$	$= \frac{\ln ax+b }{a} + C$

Example 2 (Using results (a) to (b))

Find the following indefinite integrals.

(i)	$\int x^3 \mathrm{d}x = \frac{x^4}{4} + C ,$	(vi)	$\int (x+2) dx = \frac{x^2}{2} + 2x + C$
	4		\mathcal{L}
	where <i>C</i> is an arbitrary constant		OR
			$\int (x+2) \mathrm{d}x$
			$= \frac{(x+2)^2}{2(1)} + C = \frac{(x+2)^2}{2} + C,$
			where <i>C</i> is an arbitrary constant
(ii)	$\int 2 dx = \int 2x^{0} dx = 2x + C,$ where C is an arbitrary constant	(vii)	$\int (3x-5)^6 dx = \frac{(3x-5)^7}{7(3)} + C$
			$=\frac{\left(3x-5\right)^7}{21}+C,$
(***)	1	(•••)	where <i>C</i> is an arbitrary constant
(iii)	$\int \sqrt{x} \mathrm{d}x = \int x^{\frac{1}{2}} \mathrm{d}x$	(viii)	$\int \frac{2}{(3x+4)^3} \mathrm{d}x = \int 2(3x+4)^{-3} \mathrm{d}x$
	$=\frac{x^{\frac{3}{2}}}{\frac{3}{2}}+C$		$=2\frac{(3x+4)^{-2}}{-2(3)}+C$
	$=\frac{2}{3}x^{\frac{3}{2}}+C,$		$= -\frac{1}{3(3x+4)^2} + C,$
	where <i>C</i> is an arbitrary constant		where <i>C</i> is an arbitrary constant
(iv)	$\int \frac{1}{\sqrt{x}} \mathrm{d}x = \int x^{-\frac{1}{2}} \mathrm{d}x$	(ix)	$\int \frac{2}{\sqrt{3x+1}} \mathrm{d}x = \int 2(3x+1)^{-\frac{1}{2}} \mathrm{d}x$
	$=\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+C$		$=2\frac{(3x+1)^{\frac{1}{2}}}{\frac{1}{2}(3)}+C$
	$=2x^{\frac{1}{2}}+C,$		$=\frac{4}{3}\sqrt{3x+1}+C,$
	where <i>C</i> is an arbitrary constant		where <i>C</i> is an arbitrary constant
(v)	$\int \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right) dx = \frac{2}{3} x^{\frac{3}{2}} + 2x^{\frac{1}{2}} + C,$	(x)	$\int x(x-2) dx = \int (x^2 - 2x) dx$
	where C is an arbitrary constant		$= \frac{x^3}{3} - 2 \cdot \frac{x^2}{2} + C$

	$=\frac{x^3}{3}-x^2+C,$	
	where <i>C</i> is an arbitrary constant	

Example 3 (using results (c) and (d))

Find the following indefinite integrals.

(i)	$\int \frac{3}{2x} dx = \frac{3}{2} \int \frac{1}{x} dx$ $= \frac{3}{2} \ln x + C,$ where C is an arbitrary constant	(iii)	$\int \frac{3}{1-2x} dx = 3 \int \frac{1}{1-2x} dx$ $= 3 \frac{\ln 1-2x }{-2} + C$ $= -\frac{3}{2} \ln 1-2x + C,$ where C is an arbitrary constant
(ii)	$\int \frac{1}{2x+1} dx = \frac{\ln 2x+1 }{2} + C,$ where <i>C</i> is an arbitrary constant	(iv)	$\int \left(\frac{1}{(1-3x)^2} + \frac{1}{4x+3} \right) dx$ $= \int (1-3x)^{-2} dx + \int (4x+3)^{-1} dx$ $= \frac{(1-3x)^{-1}}{-1(-3)} + \frac{\ln 4x+3 }{4} + C$ $= \frac{1}{3(1-3x)} + \frac{\ln 4x+3 }{4} + C,$ where C is an arbitrary constant

7.3.2 Integrate Exponential Function

Function	Integral
$\int e^x dx$	$=e^x + C$, where C is an arbitrary constant
$\int e^{ax+b} dx$	$= \frac{1}{a}e^{ax+b} + C,$ where <i>C</i> is an arbitrary constant

Example 4

Find the following indefinite integrals.

(i)		(iv)	
(1)	$\int 2e^x \mathrm{d}x = 2 \int e^x \mathrm{d}x$	(14)	7 x-4
	$=2e^x+C,$		$\int e^{7x-4} \mathrm{d}x = \frac{e^{7x-4}}{7} + C,$
	where C is an arbitrary constant		where C is an arbitrary constant
(ii)	$\int \frac{1}{e^{2x}} \mathrm{d}x = \int e^{-2x} \mathrm{d}x$	(v)	$\int \frac{e^{2x} - 3}{e^x} dx = \int \left(\frac{e^{2x}}{e^x} - \frac{3}{e^x}\right) dx$
	$=\frac{e^{-2x}}{-2}+C$		$= \int \left(e^x - 3e^{-x}\right) \mathrm{d}x$
	$=-\frac{1}{2e^{2x}}+C,$		$=e^x-3\frac{e^{-x}}{-1}+C$
	where <i>C</i> is an arbitrary constant		$=e^x+\frac{3}{e^x}+C,$
			where C is an arbitrary constant
(iii)	$\int \sqrt{e^x} \mathrm{d}x = \int \left(e^x\right)^{\frac{1}{2}} \mathrm{d}x$	(vi)	$\int (e^x - e^{3x})^2 dx = \int (e^x - e^{3x})^2 dx$
	$= \int e^{\frac{x}{2}} dx$		$= \int (e^{2x} - 2e^{4x} + e^{6x}) \mathrm{d}x$
	$= \int_{x}^{e^{2}} dx$		$=\frac{e^{2x}}{2}-\frac{2e^{4x}}{4}+\frac{e^{6x}}{6}+C$
	$=\frac{e^{\frac{1}{2}}}{1}+C$		2 4 0
	$=\frac{e^{\frac{x}{2}}}{\frac{1}{2}}+C$		$=\frac{e^{2x}}{2}-\frac{e^{4x}}{2}+\frac{e^{6x}}{6}+C,$
	$=2e^{\frac{x}{2}}+C,$		where C is an arbitrary constant
	where <i>C</i> is an arbitrary constant		

Example 5

Show that
$$\frac{d}{dx} \left[\ln \sqrt{2x^2 + 1} \right] = \frac{2x}{2x^2 + 1}$$
. Hence find $\int \frac{3x}{2x^2 + 1} dx$.

Solution:

$$\frac{d}{dx} \left[\ln \sqrt{2x^2 + 1} \right] = \frac{d}{dx} \left[\frac{1}{2} \ln(2x^2 + 1) \right]$$
$$= \frac{1}{2} \left(\frac{4x}{2x^2 + 1} \right)$$
$$= \frac{2x}{2x^2 + 1} \quad \text{(Shown)}$$

$$\int \frac{3x}{2x^2 + 1} dx = \frac{3}{2} \int \frac{2x}{2x^2 + 1} dx$$
$$= \frac{3}{2} \left[\ln \sqrt{(2x^2 + 1)} \right] + C \text{ where } C \text{ is an arbitrary constant}$$

Exercise 1

- Find the following indefinite integrals.

- (i) $\int \left(3x^5 + 2x 4\right) dx$ (ii) $\int \frac{1 x}{\sqrt{x}} dx$ (iii) $\int \left(t 2\right) \left(t + 3\right) dt$
- (iv) $\int \sqrt{(5x+7)^3} dx$
- (v) $\int 2e^{3x} dx$ (vi) $\int e^{3x-5} dx$

(i)
$$\int (3x^5 + 2x - 4) dx = \frac{3x^6}{6} + \frac{2x^2}{2} - 4x + C$$

$$= \frac{x^6}{2} + x^2 - 4x + C,$$
where C is an arbitrary constant
$$= \frac{x^2}{2} + \frac{x^2}{2} - 4x + C,$$
where C is an arbitrary constant
$$= \frac{x^2}{2} - \frac{x^3}{2} + C$$

$$= 2\sqrt{x} - \frac{2}{3}x^{\frac{3}{2}} + C,$$
where C is an arbitrary constant
$$= \frac{t^3}{3} + \frac{t^2}{2} - 6t + C,$$
where C is an arbitrary constant

	$\int \sqrt{(5x+7)^3} dx = \int (5x+7)^{\frac{3}{2}} dx$
	$=\frac{(5x+7)^{\frac{5}{2}}}{\frac{5}{2}(5)}+C$
	$=\frac{2}{25}(5x+7)^{\frac{5}{2}}+C,$
	where <i>C</i> is an arbitrary constant
(v) $\int 2e^{3x} dx = \frac{2e^{3x}}{3} + C$,	(vi) $\int e^{3x-5} dx = \frac{e^{3x-5}}{3} + C,$
where <i>C</i> is an arbitrary constant	where <i>C</i> is an arbitrary constant

2. **DHS Prelim 8865/2018/Q2**

- (i) Differentiate $\sqrt{(e^{2x}+1)^3}$ with respect to x.
- (ii) Hence find $\int e^x \sqrt{(e^{4x} + e^{2x})} dx$.

Solution:

(i)
$$\frac{d}{dx}\sqrt{(e^{2x}+1)^3} = \frac{d}{dx}(e^{2x}+1)^{\frac{3}{2}} = \frac{3}{2}(e^{2x}+1)^{\frac{1}{2}}\left(2e^{2x}\right) = 3e^{2x}\sqrt{(e^{2x}+1)}$$

(ii)
$$\int e^{x} \sqrt{(e^{4x} + e^{2x})} dx$$

$$= \int e^{x} \sqrt{[e^{2x}(e^{2x} + 1)]} dx$$

$$= \frac{1}{3} \int 3e^{2x} \sqrt{(e^{2x} + 1)} dx$$

$$= \frac{1}{3} \left[\sqrt{(e^{2x} + 1)^{3}} \right] + C$$

3. NJC Prelim 8865/2018/Q3

- (i) Differentiate $\ln(x^2+9)$.
- (ii) Express $\frac{2x^2 x + 9}{(1 x)(x^2 + 9)}$ in the form $\frac{A}{1 x} + \frac{Bx}{x^2 + 9}$ where A and B where are integers to be determined.
- (iii) Hence find $\int \frac{2x^2 x + 9}{(1 x)(x^2 + 9)} dx.$

(i)
$$\frac{d}{dx} \left[\ln(x^2 + 9) \right] = \frac{2x}{x^2 + 9}$$

(ii)
$$\frac{A}{1-x} + \frac{Bx}{x^2 + 9} = \frac{A(x^2 + 9) + (1-x)(Bx)}{(1-x)(x^2 + 9)}$$
$$= \frac{Ax^2 + 9A + Bx - Bx^2}{(1-x)(x^2 + 9)}$$
$$= \frac{(A-B)x^2 + Bx + 9A}{(1-x)(x^2 + 9)}$$

Comparing coefficients with $\frac{2x^2-x+9}{(1-x)(x^2+9)}$:

$$x^2: A - B = 2$$

$$x : B = -1$$

constant: $9A = 9 \Rightarrow A = 1$

Therefore, A = 1, B = -1

Hence
$$\frac{2x^2 - x + 9}{(1 - x)(x^2 + 9)} = \frac{1}{1 - x} - \frac{x}{x^2 + 9}$$
 (shown)

(iii)
$$\int \frac{2x^2 - x + 9}{(1 - x)(x^2 + 9)} dx = \int \frac{1}{1 - x} - \frac{x}{x^2 + 9} dx$$
$$= \int \frac{1}{1 - x} dx - \frac{1}{2} \int \frac{2x}{x^2 + 9} dx$$
$$= -\ln|1 - x| - \frac{1}{2}\ln(x^2 + 9) + C$$

Answer:

$1(i) \frac{x^6}{2} + x^2 - 4x + C$	1(ii) $2\sqrt{x} - \frac{2}{3}x^{\frac{3}{2}} + C$
$1(iii) \frac{t^3}{3} + \frac{t^2}{2} - 6t + C$	1(iv) $\frac{2}{25} (5x+7)^{\frac{5}{2}} + C$
$1(v) \frac{2e^{3x}}{3} + C$	$1(vi) \frac{e^{3x-5}}{3} + C$

For (i) to (iii) above, C represents an arbitrary constant.

2.
$$3e^{2x}\sqrt{(e^{2x}+1)}; \frac{1}{3}\left[\sqrt{(e^{2x}+1)^3}\right] + C$$

3. (i)
$$\frac{2x}{x^2+9}$$
; (ii) $A=1, B=-1$; (iii) $-\ln|1-x|-\frac{1}{2}\ln(x^2+9)+C$

7.4 Miscellaneous Examples

Example 6

Given that the gradient of a curve is $2x^2 + 7x$ and that the curve passes through the origin, determine the equation of the curve.

Solution:

Given
$$\frac{dy}{dx} = 2x^2 + 7x$$
,

$$y = \int (2x^2 + 7x) dx$$

$$= 2\left(\frac{x^3}{3}\right) + 7\left(\frac{x^2}{2}\right) + C,$$

where C is an arbitrary constant

$$= \frac{2}{3}x^3 + \frac{7}{2}x^2 + C\cdots(1)$$

Since curve passes through the origin,

$$0 = 0 + C$$

$$C = 0$$

Therefore the equation of the curve is $y = \frac{2}{3}x^3 + \frac{7}{2}x^2$.

Note: (0, 0) satisfies the equation $y = \frac{2}{3}x^3 + \frac{7}{2}x^2 + C$ Substitute x = 0, y = 0 into (1)

Example 7

Given that the rate of change of s with respect to t is given by $\frac{ds}{dt} = 3t^2 - 7$ and that s = 6 when t = 0, find s in terms of t.

Solution:

Given
$$\frac{ds}{dt} = 3t^2 - 7$$
,
 $s = \int (3t^2 - 7) dt$
 $= \frac{3t^3}{3} - 7t + C$, where C is an arbitrary constant $\cdots(1)$
When $s = 6$ and $t = 0$
 $6 = 0 - 0 + C$
 $C = 6$
 $\therefore s = t^3 - 7t + 6$

Note: Substitute s = 6, t = 0 into (1)

Exercise 2

Find the following indefinite integrals.

(i)
$$\int \left(t^{\frac{5}{2}} + \frac{1}{t^2}\right) dt$$

(ii)
$$\int (2x+9)^5 dx$$

(ii)
$$\int (2x+9)^5 dx$$
 (iii)
$$\int \frac{3}{3-2x} dx$$

(iv)
$$\int \frac{1}{5x+3} \, \mathrm{d}x$$

(iv)
$$\int \frac{1}{5x+3} dx$$
 (vi) $\int \frac{7}{\sqrt{2-3x}} dx$ (vi) $\int \frac{e^{1-x}+3}{e^{x+1}} dx$

$$(vi) \int \frac{e^{1-x}+3}{e^{x+1}} \, \mathrm{d}x$$

Solution:

For (i) to (vi) below, C represents an arbitrary constant.

(i)
$$\int \left(t^{\frac{5}{2}} + \frac{1}{t^2}\right) dt = \int \left(t^{\frac{5}{2}} + t^{-2}\right) dt$$
$$= \frac{t^{\frac{7}{2}}}{\frac{7}{2}} + \frac{t^{-1}}{-1} + C$$
$$= \frac{2}{7}t^{\frac{7}{2}} - \frac{1}{t} + C$$
$$= \frac{3}{3 - 2x} dx = \frac{3\ln|3 - 2x|}{-2} + C$$
$$= -\frac{3}{2}\ln|3 - 2x| + C$$

(ii)
$$\int (2x+9)^5 dx = \frac{(2x+9)^6}{6(2)} + C$$
$$= \frac{(2x+9)^6}{12} + C$$

(iii)
$$\int \frac{3}{3-2x} dx = \frac{3 \ln|3-2x|}{-2} + C$$
$$= -\frac{3}{2} \ln|3-2x| + C$$
$$(v) \int \frac{7}{\sqrt{2-3x}} dx = \int 7(2-3x)^{-\frac{1}{2}} dx$$

(iv)
$$\int \frac{1}{5x+3} dx = \frac{\ln|5x+3|}{5} + C$$

(v)
$$\int \frac{1}{\sqrt{2-3x}} dx = \int 7(2-3x)^{2} dx$$
$$= 7\frac{(2-3x)^{\frac{1}{2}}}{\frac{1}{2}(-3)} + C$$
$$= \frac{-14}{3}\sqrt{2-3x} + C$$

(vi)
$$\int \frac{e^{1-x} + 3}{e^{x+1}} dx = \int e^{1-x-x-1} + 3e^{-x-1} dx$$
$$= \int e^{-2x} + 3e^{-x-1} dx$$
$$= \frac{e^{-2x}}{-2} + \frac{3e^{-x-1}}{-1} + C$$
$$= -\frac{1}{2e^{2x}} - \frac{3}{e^{x+1}} + C$$

2. Given that the gradient of a curve is $\frac{dy}{dx} = \frac{1}{\sqrt{x}} - 2x$ and that the curve passes through the point (4,-2), find the equation of the curve.

Solution:

$$\frac{dy}{dx} = \frac{1}{\sqrt{x}} - 2x$$

$$y = \int \frac{1}{\sqrt{x}} - 2x \, dx$$

$$= \int x^{-\frac{1}{2}} - 2x \, dx$$
Substitute $(4, -2)$ into (1) ,
$$-2 = 2\sqrt{4} - 4^2 + C$$

$$C = -2 - 4 + 16$$

$$= 10$$
Equation of the curve is $y = 2\sqrt{x} - x^2 + 10$

$$= \frac{x^{\frac{1}{2}}}{\frac{1}{2}} - 2\left(\frac{x^2}{2}\right) + C = 2\sqrt{x} - x^2 + C - (1)$$
,
where C is an arbitrary constant

3. The gradient of a curve at any point is given by $\frac{dy}{dx} = 4 - 2x$. Explain why the curve has a maximum value when x = 2. If the maximum value of the curve is 1, find the equation of the curve.

$$\frac{dy}{dx} = 4 - 2x$$
When $\frac{dy}{dx} = 0$, $4 - 2x = 0$

$$2x = 4$$

$$x = 2$$

$$\frac{d^2y}{dx^2} = -2 < 0$$
Therefore, the curve has a maximum value when $x = 2$.
$$y = \int (4 - 2x) dx$$

$$y = 4x - \frac{2x^2}{2} + C$$

$$= 4x - x^2 + C \cdots (1)$$
where C is an arbitrary constant
Substitute $(2,1)$ into (1) ,
$$1 = 4(2) - 2^2 + C$$

$$C = 1 - 8 + 4$$

$$= -3$$
Equation of the curve is $y = 4x - x^2 - 3$.

4. The curve for which $\frac{dy}{dx} = 2x + \frac{k}{x^2}$, where *k* is a constant, passes through the points (1,1) and (2,12). Find the equation of the curve and the stationary point.

Solution:

Solving (2) and (3) using GC,
$$k = C = 16$$

$$y = \int 2x + \frac{k}{x^2} dx$$

$$= \int 2x + kx^{-2} dx$$

$$= 2\left(\frac{x^2}{2}\right) + k\frac{x^{-1}}{-1} + C$$

$$= x^2 - \frac{k}{x} + C \cdots (1)$$
where C is an arbitrary constant Substitute (1,1) into (1),
$$1 = 1 - k + C$$

$$-k + C = 0 \cdots (2)$$
Substitute (2,12) into (1),
$$12 = 2^2 - \frac{k}{2} + C$$

$$-\frac{k}{2} + C = 8 \cdots (3)$$
Solving (2) and (3) using GC,
$$k = C = 16$$
Equation of the curve is $y = x^2 - \frac{16}{x} + 16$

$$2x = -\frac{16}{x^2}$$
When $\frac{dy}{dx} = 0$, $2x + \frac{16}{x^2} = 0$

$$2x = -\frac{16}{x^2}$$
When $x = -2$

$$x = -2$$
When $x = -2$, $y = (-2)^2 - \frac{16}{-2} + 16$

$$= 4 + 8 + 16$$

$$= 28$$

$$(-2, 28)$$
 is the stationary point.

Answers:

$1(i) \ \frac{2}{7}t^{\frac{7}{2}} - \frac{1}{t} + C$	$(ii) \frac{\left(2x+9\right)^6}{12} + C$
(iii) $-\frac{3}{2}\ln 3-2x +C$	$1(iv) \frac{\ln 5x+3 }{5} + C$
$\frac{-14}{1(v)} \frac{-14}{3} \sqrt{2-3x} + C$	$1(vi) - \frac{1}{2e^{2x}} - \frac{3}{e^{x+1}} + C$
$2. \ \ y = 2\sqrt{x} - x^2 + 10$	3. $y = 4x - x^2 - 3$
4. $y = x^2 - \frac{16}{x} + 16$, $(-2, 28)$	

For 1(i) to 1(vi) above, C represents an arbitrary constant.

Practice Questions

1. [NYJC/2018/BT2/Q3a]

Find
$$\int \frac{\left(x^2+3\right)^2}{x^3} \, \mathrm{d}x.$$

[Ans:
$$\frac{x^2}{2} + 6 \ln |x| - \frac{9}{2x^2} + C$$
]

Solution:

$$\int \frac{(x^2+3)^2}{x^3} dx = \int \frac{x^4+6x^2+9}{x^3} dx$$
$$= \int x + \frac{6}{x} + \frac{9}{x^3} dx$$
$$= \frac{x^2}{2} + 6\ln|x| - \frac{9}{2x^2} + C$$

where C is an arbitrary constant

2. [DHS/2018/BT1/Q2b]

Find
$$\int \left(3e^{1-2t} + \frac{1}{\sqrt{(2t+1)}}\right) dt.$$
[Ans: $-\frac{3}{2}e^{1-2t} + \sqrt{(2t+1)} + C$, where C is an arbitrary constant]

Solution:

$$\int \left(3e^{1-2t} + \frac{1}{\sqrt{(2t+1)}}\right) dt$$

$$= \int \left(3e^{1-2t} + (2t+1)^{-\frac{1}{2}}\right) dt$$

$$= \frac{3e^{1-2t}}{-2} + \frac{(2t+1)^{\frac{1}{2}}}{\frac{1}{2}(2)} + C$$

$$= -\frac{3}{2}e^{1-2t} + \sqrt{(2t+1)} + C, \text{ where } C \text{ is an arbitrary constant}$$

3. [AJC Promo 8865/2018/Q3b]

(i) Find
$$\int \left(e^{1-2x} + \frac{1}{2x} + \frac{1}{x\sqrt{x}} \right) dx$$
, simplifying your answers.

(ii) Find
$$\int \frac{1}{2(1+3x)^2} dx$$
.

[Ans: (i) =
$$-\frac{e^{1-2x}}{2} + \frac{1}{2} \ln|x| - \frac{2}{\sqrt{x}} + C$$
 (ii) $-\frac{1}{6(1+3x)} + C$]

Solution:

(i)
$$\int \left(e^{1-2x} + \frac{1}{2x} + \frac{1}{x\sqrt{x}} \right) dx$$
$$= -\frac{e^{1-2x}}{2} + \frac{1}{2} \ln|x| - 2x^{-\frac{1}{2}} + C = -\frac{e^{1-2x}}{2} + \frac{1}{2} \ln|x| - \frac{2}{\sqrt{x}} + C, C \text{ is an arbitrary constant}$$

(ii)
$$\int \frac{1}{2(1+3x)^2} dx = \frac{1}{2} \int (1+3x)^{-2} dx$$
$$= \frac{1}{2} \left[\frac{(1+3x)^{-1}}{-1(3)} \right] + C$$
$$= -\frac{1}{6(1+3x)} + C, \text{ where C is an arbitrary constant}$$

4. [NJC/2018/BT2/Q6]

(i) Verify that
$$x+4+\frac{25}{x-4}=\frac{x^2+9}{x-4}$$
.

(ii) Given that
$$y = \ln(e^{x^2} - 1)$$
, find $\frac{dy}{dx}$.

(iii) Hence, find
$$\int \frac{x^2+9}{x-4} + \frac{2xe^{x^2}}{e^{x^2}-1} dx$$
.

[Ans: (ii)
$$\frac{dy}{dx} = \frac{2xe^{x^2}}{e^{x^2}-1}$$
 (iii) $\frac{x^2}{2} + 4x + 25\ln(x-4) + \ln(e^{x^2}-1) + C$]

Solution:

(i) LHS =
$$x + 4 + \frac{25}{x - 4} = \frac{(x + 4)(x - 4) + 25}{x - 4} = \frac{x^2 - 16 + 25}{x - 4}$$

= $\frac{x^2 - 9}{x - 4} = \text{RHS}$

(ii)
$$y = \ln\left[\left(e^{x^2} - 1\right)\right]$$
$$\frac{dy}{dx} = \frac{2xe^{x^2}}{e^{x^2} - 1}$$

(iii)

$$\int \frac{x^2 + 9}{x - 4} + \frac{2xe^{x^2}}{e^{x^2} - 1} dx$$

$$= \int x + 4 + \frac{25}{x - 4} + \frac{2xe^{x^2}}{e^{x^2} - 1} dx$$

$$= \frac{x^2}{2} + 4x + 25\ln(x - 4) + \ln(e^{x^2} - 1) + C, \text{ where C is an arbitrary constant}$$

- [DHS Promo 8865/2018/Q3]
 - (a) (i) For $0 < x < \frac{3}{2}$, show that $\frac{d}{dx} \ln(x^3(3-2x)) = \frac{a+bx}{x(3-2x)}$, where a and b are constants to be determined.
 - (ii) Hence solve $\int \frac{27-24x}{x(3-2x)} dx$.
 - (b) Find $\int \int me^{m^2-2x} + 3(mx)^2 dx$, where m is a constant.

[Ans: (a)(i)
$$\frac{9-8x}{x(3-2x)}$$
 (a)(ii) $3\ln(x^3(3-2x)) + C$ (b) $-\frac{1}{2}me^{m^2-2x} + m^2x^3 + c$]

Solution:

(a)(i)
$$\frac{d}{dx} \ln(x^{3}(3-2x))$$

$$= \frac{d}{dx} \left(3 \ln x + \ln(3-2x)\right)$$

$$= \frac{3}{x} - \frac{2}{3-2x}$$

$$= \frac{3(3-2x)-2x}{x(3-2x)}$$

$$= \frac{9-8x}{x(3-2x)}, \text{ where } a = 9, b = -8 \text{ (shown)}$$
Alternative Method
$$\frac{d}{dx} \ln(x^{3}(3-2x))$$

$$= \frac{d}{dx} \left(\ln(3x^{3}-2x^{4})\right)$$

$$= \frac{9x^{2}-8x^{3}}{3x^{3}-2x^{4}}$$

$$= \frac{9-8x}{3x-2x^{2}}$$

$$= \frac{9-8x}{3x-2x^{2}}, \text{ where } a = 9, b = -8 \text{ (shown)}$$

Alternative Method
$$\frac{d}{dx}\ln(x^{3}(3-2x))$$

$$= \frac{d}{dx}\left(\ln(3x^{3}-2x^{4})\right)$$

$$= \frac{9x^{2}-8x^{3}}{3x^{3}-2x^{4}}$$

$$= \frac{9-8x}{3x-2x^{2}}$$

$$= \frac{9-8x}{x(3-2x)}, \text{ where } a = 9, b = -8 \text{ (shown)}$$

(a)(ii)
$$\int \frac{27 - 24x}{x(3 - 2x)} dx = 3 \int \frac{9 - 8x}{x(3 - 2x)} dx$$

$$=3\ln(x^3(3-2x))+c$$
, where c is an arbitrary constant

(b)
$$\int \left[m e^{m^2 - 2x} + 3(mx)^2 \right] dx$$

$$= m \int e^{m^2 - 2x} dx + 3m^2 \int x^2 dx.$$

$$= -\frac{1}{2} m e^{m^2 - 2x} + m^2 x^3 + c, \text{ where c is an arbitrary constant}$$

Summary

In the table below, k', a' and b' are constants, and C is an arbitrary constant.

	Common functions	Function	Integral
(a)	Constant	$\int k \mathrm{d}x$	=kx+C
(b)	Variable	$\int x dx$	$=\frac{x^2}{2}+C$
(c)	Square	$\int x^2 dx$	$=\frac{x^3}{3}+C$
(d)	Power where $n \neq -1$	$\int x^n \mathrm{d}x$	$=\frac{x^{n+1}}{n+1}+C, n\neq -1$
(e)		$\int (ax+b)^n dx$	$= \frac{\left(ax+b\right)^{n+1}}{a\left(n+1\right)} + C, n \neq -1$
(f)	Power where $n = -1$	$\int x^{-1} \mathrm{d}x = \int \frac{1}{x} \mathrm{d}x$	$=\ln x +C$
(g)		$\int (ax+b)^{-1} dx = \int \frac{1}{ax+b} dx$	$= \frac{\ln\left ax+b\right }{a} + C$
(h)	Exponential	$\int e^x dx$	$=e^x+C$
(i)		$\int e^{ax+b} dx$	$= \frac{1}{a}e^{ax+b} + C$