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1 Without using a calculator, solve the inequality 
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2 Prove by mathematical induction that, 

  

 where sin5 0x ≠ , for non-negative integers n. [5] 

 

3 The function f  is defined by  

 

 (i) Show by differentiation that f  is a decreasing function on any interval in the 

domain. [2] 

 (ii) Find ( )1f x− , stating its domain. [3] 

 

4 The diagram shows the curve with equation 
3 2 2 3 1x y x y+ = . The curve is symmetrical 

about the line y x=  and has a stationary point A .  

 

 (i) Find the exact coordinates of A . [5] 

 (ii) The point B  is the point of the curve at which the tangent is parallel to the y -axis. 

Hence, or otherwise, state the exact coordinates of B . [1] 
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5 The ellipse 1C  with the equation 
2 2

2 2
1

6 3

x y
+ =  is transformed by a stretch with scale factor 

k   parallel to the x -axis, followed by a translation of m units in the positive x -direction, 

followed by a translation of n units in the negative y -direction, to form 2C . 

 (i) Find the equation of 2C in terms of k, m, and n. [3] 

 (ii) Given that 2C is a circle centred at ( )4, 7− , find the values of k, m and n. [2] 

 

6 The variables u and t are related by ( )2 d
1 5

d

u
t t

t
+ = . 

 (i) Find the particular solution of the differential equation for which 3u =  when 0t = . 

    [4] 

 (ii) What can be said about the gradient of every solution curve as t → ±∞? [1] 

 (iii) On a single diagram, sketch the curve represented by the result in part (i), together 

with another member of the family of solution curves. [2] 

 

7 A curve C has parametric equations  

33 cos ,      4 sin ,x yθ θ= − = +   where 0 θ π≤ ≤ . 

 (i) Sketch C, showing clearly the coordinates of the points on the curve where 

0 and θ π= . [2] 

 (ii) Without using a calculator, find the exact area of the region bounded by C and the 

line 4y = . [6] 

 

8 (i) Show that 
( )( )

2 3 1 4
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. [2] 

 (ii) Hence find
( )( )1
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∑ , giving your answer in the form ( )fk n− , where k 

is a constant. [4] 

 (iii) Use your answer to part (ii) to find 
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9 The function g , with domain { :1 6}x x∈ ≤ ≤ℝ , has six of its function values given in the 

table below. 

x  1 2 3 4 5 6 

( )g x  4 5 1 3 2 5 

 

 (i) Use the table to explain why g  does not have an inverse function. [2] 

 (ii) Find ( )3g 3 . Hence find the set of all positive integers n  for which ( )g 3 4n
= .  [3] 

 It is also known that for 1, 2,3,4,5k =  

( ) ( ) ( ) ( )( )( )g g g 1 g for 1x k k k x k k x k= + + − − < < + . 

 (iii) Evaluate ( )g 1.5 and ( )g 2.7 . [2] 

 (iv) Sketch the graph of ( )gy x= . [2] 

 (v)  Find the range of values of k  for which the equation ( )g x k=  has four real distinct 

roots.  [1] 

 

10 Relative to the origin O, the position vectors of A and B are a and b respectively where a 

and b are non-parallel vectors. It is also know that ∠ OAB has a size of 
6

π
 radians. 

 (i) State an unit vector that is parallel to AB
����

in terms of a and b. [1] 

 The point M is on the line AB such that MOA∠ is equal to OAB∠ .  

 (ii) Using sine rule for the triangle OAM, or otherwise, find the length of AM in terms of 

a. Hence find AM
�����

 in terms of a and b.  [3] 

 It is given further that 0• =a b . 

 (iii)  Hence, by considering AM
�����

and another suitable vector, prove that the shortest 

distance from M to the line OA can be expressed as 
3 −

a b

b a
units. [4] 
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11 It is given that ( ) 1ln 1 tany x
−

+ = .  

 (i) Prove that ( )2 d
1 1

d

y
x y

x
+ = + . [2] 

 (ii) Find the first three non-zero terms in the Maclaurin’s series for y.  [3] 

 (iii) (a) Use your answer to part (ii) to give an approximation for ( )
1

1

tan2

0
1  d

x
e x

−

−∫ . 

 (b) Use your calculator to find an accurate value for ( )
1

1

tan2

0
1 d

x
e x

−

−∫ . How can the 

approximation in (iii)(a) be made better?  [4]      

12 

 

  

 

 

 

 

 A jewel company makes a box of volume 100 cm
3
 and of negligible thickness in the 

shape of a prism with the cross-sectional area of a regular hexagon. Each side of the 

hexagon is a cm and the height of the box is h cm. The lid of the box has depth kh cm 

where 0 1k< ≤  (see diagram).    

 (i) Show that the area of the hexagonal cross-section of the box can be expressed as

23 3

2
a . [3] 

 (ii) Given that the volume of the box can be expressed as 23 3

2
V a h=  , use 

differentiation to find the value of a that gives the minimum total external surface 

area of the box and lid in terms of k.   [5] 

 (iii) Find the ratio 
h

a
in this case, simplifying your answer. [1] 

 (iv) Find the values for which 
h

a
must lie.    [2] 

Box 

a 

a 

h 

Lid 

a 

a 

kh 
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13 (a) A complex number  z = x iy+ , where , ,x y ∈ℝ  is represented by the point P in an 

Argand diagram. The complex number 
2

, where 4,
4

z i
w z

z

−
= ≠ −

+
 has its real part 

zero. By using z = x iy+ , or otherwise, show that the locus of P in the Argand 

diagram is a circle. Hence find the equation of the circle, stating clearly its centre 

and radius.              [4] 

(b) The complex number  z satisfies the relations | 2 | 5z i+ − ≤  and  

 arg
3

( 1 2 )
4

z i
π

− + = . 

 (i) Illustrate both of these relations on a single Argand diagram.                  [4] 

 (ii) Find the exact minimum and maximum value of | 1 2 |z i− + .                   [2]       

 (iii) Find the minimum and maximum values of arg ( 1 2 )w i− + , where w satisfies 

| 2 | 5w i+ − = .                                                                         [3] 
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