
 
 

 
 

 
Swings are one of a child’s earliest interactions with free oscillations and 

resonance. Find out why the frequency of oscillations does not differ with the 

mass of the person on it, and how our parents, siblings and friends naturally 

supply extra bursts of energy into the swing system under resonant conditions.              

Content 

• Simple harmonic motion 

• Energy in simple harmonic motion 

• Damped and forced oscillations, resonance 

 

Learning Outcomes 

Candidates should be able to: 

(a) describe simple examples of free oscillations 

(b) investigate the motion of an oscillator using experimental and graphical methods 

(c) show an understanding of and use the terms amplitude, period, frequency, angular frequency and phase 

 difference and express the period in terms of both frequency and angular frequency 

(d) recall and use the equation 
2a x= −  as the defining equation of simple harmonic motion 

(e) recognise and use 
0 sinx x t=  as a solution to the equation 

2a x= −  

(f) recognise and use the equations 
0 cosv v t=  and 

2 2

0v x x=  −   

(g) describe, with graphical illustrations, the changes in displacement, velocity and acceleration during simple  

 harmonic motion 

(h) describe the interchange between kinetic and potential energy during simple harmonic motion 

(i) describe practical examples of damped oscillations with particular reference to the effects of the degree of  damping 

 and to the importance of critical damping in applications such as a car suspension system 

(j) describe practical examples of forced oscillations and resonance 

(k) describe graphically how the amplitude of a forced oscillation changes with driving frequency near to the natural 

 frequency of the system, and understand qualitatively the factors which determine the frequency response and 

 sharpness of the resonance 

(l) show an appreciation that there are some circumstances in which resonance is useful, and other 

 circumstances in which resonance should be avoided 

We have studied the kinematics of bodies in (i) straight line, (ii) projectile and (iii) circular motions.  

 

Oscillatory motions are another type of motion that can be often seen in everyday life: the swinging 

pendulum of a grandfather clock, the vibrations of a bus, and the waves on the strings of a guitar. 

Other non-visible examples include the electro-magnetic oscillations emitted by wireless equipment, 

gaseous atoms and molecules that propagate sound waves, and the lattice vibrations of atoms.  

 

To better understand how these systems work, it is important we learn the mechanics of oscillations.  



 
 

 
 

 

If an oscillation repeats over 

time, it is a periodic motion.  

 

An oscillation begins when a 

system is perturbed from a 

condition of stable equilibrium.  

 

Force(s) tend to arise as a result of the initial disturbance, to bring the system back to the state of 

stable equilibrium – these are generally known as restoring forces. 

 

The initial perturbation introduces an amount of energy. Within the system, a continuous and periodic 

interchange of kinetic and potential energy takes place – there is usually maximal amounts of 

potential energy where/when the kinetic energy is at a minimal, and vice versa. 

 

Free oscillations occur when a system 

is displaced from its state of stable 

equilibrium and is then allowed to move 

or respond without restraint.   

 

There is no external force applied or 

resisting its motion.  

 

Therefore there is no gain or loss of 

total energy of the oscillating system.  

 

When a system oscillates freely, it does so at its natural 

frequency, which depends on some physical factors such 

as its dimensions, mass or elasticity.  

 

 

Free oscillations are oscillations with 

 

constant amplitude and  

without energy loss or gain 

as there is no driving or resistive forces acting 

on it. 

An oscillation is  

 

a to-and-fro motion 

between two limits 

Natural frequency is the 

 

frequency at which a body will vibrate  

when there is no driving or resistive forces 

acting on it. 

spring-mass stretched string pendulum 

(stable equilibrium) (stable equilibrium) (stable equilibrium) 

The natural frequency of a simple pendulum is 

dependent only on its length – so swings (look 

at it from the side) typically exhibit the same 

frequency regardless of the weight of the child. 



 
 

 
 

We refer to a vertical spring-mass system attached to a ceiling to help familiarize ourselves with the 

various quantities used to describe an oscillation. 

 

equilibrium position position where no net force acts on the oscillating mass 
 

displacement x   distance in a specified direction from equilibrium position of oscillating mass 
 

amplitude 
0x   maximum displacement from equilibrium position 

 

period T time taken for one complete oscillation of the oscillating mass 
 

frequency f number of complete oscillations per unit time. (unit: Hertz, Hz)  
1

f
T

=  

 

phase    

an angular measure (in either degrees or radians) of the fraction of a cycle  

completed by the oscillating mass 

 

i.e. completion of one complete cycle corresponds to a phase 

360  or 2  rad =    

phase difference  

   

measure of how much an oscillation is out of step with another oscillation 

 

if two oscillations are  

in-phase:   0 =  

out-of-phase:  0   

anti-phase:    OR  180  =   

angular frequency  

   

defined as the product of 2π and frequency. 

unit: radian s-1 

 

 

(i)  is effectively rate of change of phase of oscillating mass 
d

dt


 =   

 

(ii)  shares same symbol   as circular motion’s angular velocity (rate of 

 change of angular displacement
d

dt


 =




 but are different quantities! 

 

displacement x 

0 time t 

+ x0 

- x0 

period T 
period T 

equilibrium  

amplitude  

amplitude  

2 f =  



 
 

 
 

The oscillation of a vertical spring-mass system can be investigated using a motion sensor 

connected to a data logger.  
 

 

 

 
A motion sensor can measure position, 

velocity and acceleration of moving objects 

by emitting ultrasonic pulses and 

determining the time lag of pulses reflected 

back to the sensor. 

 

Because it needs a surface to reflect the 

ultrasound, it is not suitable if (i) the moving 

object is small (like a metal ball bearing) or 

(ii) soft (high absorbance of sound waves). 

• Set up the experiment as shown above.  

• Displace the mass vertically downwards and release it to set into vertical oscillations. 

• Measure the variation with time of height h using a motion sensor connected to a data-logger 

• Start the data-logger when the oscillations are steady. 
 

 

equilibrium position  eqmh =   10.0 cm 

amplitude 0h =   2.0 cm 

period T =   3.2 s 

frequency f =    0.313 Hz 

angular frequency  =   1.96 rad s-1
 

displacement when t = 2.9 s ( )2 9h . =   1.0 cm 

equation for position h in cm* ( )h t =  2 18
10  cos

3 6
2

2 1
t

.

  
−  

 
−   

 

*Start from ( )cos cos th  = = .  At t = 1.8 s, the function is a negative cosine of amplitude 2 spanning 

till t = 5 s, so ( ) 2cos
2

1 8h t .
T

  
= −  


− 

 
. Translate vertically up by 10 to yield equation.  

benchtop 

retort stand with 
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spring 

oscillating mass 
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datalogger 
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2a x= −  
                

 
 

 

 

 

 

 

Note: 

• 2 is a constant of proportionality 

between a and x 

• negative sign indicates that a and 

x are in the opposite directions 

 

SHM is mathematically the simplest case of free oscillations. Yet by itself, it allows us to gain a deep 

understanding of periodic motion and provides a basis to describe more complicated oscillations.  

 

SHM typically describes the 

motion of a single body. When 

multiple bodies (adjacent to 

each other in space) move 

individually with their own SHMs, 

we can witness progressive or 

stationary waves when we 

“zoom out” of the individual view 

and regard the many-bodies as 

a bulk system.  

 

A block of mass m rests on a smooth surface and is 

attached to the end of a light spring of force constant k.  

 

From x = 0 the equilibrium position (i.e. when spring is 

neither compressed nor stretched), the block is displaced 

by a distance x to the right. 

 

By Newton’s 2nd law of motion: 

            
netF ma

k x ma

k k
a x x

m m

=

=

   
= = −   
   

 

         since a and x are opposite in directions 

Compare this equation with 2a x= −   

to get 
k

m
 =  

Since the relationship between a and x is in the form of the 

defining equation for SHM, the oscillations of a horizontal 

spring-mass system is simple harmonic with  

• angular frequency 
k

m
 =    

• natural frequency natural

1 1

2 2

k
f

m


 
==   

• period 2T
m

k
=    

Simple harmonic motion is a type of 
oscillatory motion where the  
 
acceleration is 
 
[magnitude]  directly proportional to 

displacement from the 
equilibrium position 

 
    and 
 
[direction]  directed opposite to 

displacement 
 
 
 
 

 

 

 

 

 

 

distance 

not time 

multiple individual 

SHMs forming a wave 

x = 0 

x 

x 

F 

a  : acceleration (m s-1) 

 : angular frequency (rad s-1) 
x  :  displacement from equilibrium  

           position (m) 



 
 

 
 

 

In (a), spring is stretched by e0 by the 

weight of the mass. Since it is at 

equilibrium, there is no resultant force: 

spring

0

F W

ke mg

=

=
 

    

In (b), the mass is pulled down and 

released to set into oscillation about 

equilibrium with amplitude of x0. 

 

In (c) which is at a displacement of x 

below the equilibrium 

 

 

 

By Newton’s 2nd law of motion: 

 

( )

net

spring

0 x mg ma

mg k x mg ma

k
a x

F ma

F m a

k e

m

g m

+ − =

+ − =



−


= 


=




=

 

k
a x

m

 
= − 

 
 since a and x are 

opposite in directions 

 

Compare with 2a x= −   

to get 
k

m
 =  

Since the relationship between a and x is in the form of the defining 

equation for SHM, the oscillations of a horizontal spring-mass system 

is simple harmonic with  

• angular frequency 
k

m
 =    

• natural frequency natural

1 1

2 2

k
f

m


 
==   

• period 2T
m

k
=    

 

  

 

Quick Check: Does a bouncing ball exhibit SHM? 

No. Its acceleration is constant whenever it is displaced from its equilibrium position (ground). 

Its acceleration is not directly proportional to its displacement from its equilibrium position. 

 

equilibrium position 

initial displacement 

unstretched length 

 

 

x 

(a) (b) (c) 



 
 

 
 

 

A pendulum bob of mass m is hung from a ceiling 

by a light inextensible string of length L. 

 

The bob is displaced initially by an angle θ from 

the vertical.  

 

The component of the weight parallel to the string 

is balanced by tension T = mg cos θ. 

 

mg sin θ remains as the net force acting on the 

pendulum bob. The restoring force is the component of W tangential to 

pendulum’s motion. 

 

 

 

by Newton’s 2nd law of motion: 

 

net

 sin

 sin

for small angles  sin

ma

mg ma

a g

s

L

g
a s

F

L





 

=

=

=

 =

 
=  
 

 

g
a s

L

 
= − 

 
 since a and s are 

opposite in directions 

 

Compare with 2a x= −  

to get 
g

L
 =  

Since the relationship between a and s is in the form of the defining 

equation for SHM, the oscillations of a horizontal spring-mass system 

is simple harmonic with  

• angular frequency 
g

L
 =    

• natural frequency natural

1 1

2 2

g
f

L


 
==   

• period 2T
L

g
=    

 

(i) The period or frequency of a simple pendulum near surface of 

Earth depends only on the length of the pendulum. 

(ii) Note the small angle approximation used; this is why 

pendulum practicals insist on small oscillations. 

  

  

 

 

 

 

L 

θ 

s 

T 

W = mg 

mg cos θ mg sin θ 

θ 
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We can visualise SHM as a 2D 

projection of uniform circular motion. 

 

In the setup (right), a motorized 

circular turntable with a stick attached 

to its rim rotates with an adjustable 

angular speed  of circular motion. A 

simple pendulum oscillates directly 

above the turntable.  

 

A projector provides a collimated light 

beam and casts the shadows of the 

ball and the pendulum on a screen. 

The angular speed of the turntable is 

adjusted such that the two shadows 

move in sync, one above the other.  

 

While the ball performs uniform circular motion, its shadow exhibits SHM. 

 

 

 

   
screen 

shadow 

        

shadow of stick 

shadow of ball 



 
 

 
 

 

The variation with time of displacement of a body under SHM is sinusoidal (sine or cosine function). 

In this scenario, 

• at time t = 0, the body is at the equilibrium point (x = 0). 

• some time t later, the displacement of the body is x and the phase angle is t = . 

 

 

displacement x velocity v acceleration a 

 

( )
0

0

 sin

 sin

x

t

x

x





=

=
 

( ) ( )0

d

d

 cos tx

x
v

t

 

=

=

  ( ) ( )

2

2

2

0

2

d d

d d

 sin t

v
a

x

x

t t

x

 



−

= =

=

= −

 

 

We say that ( )0  sin tx x =  is a solution to the defining equation of SHM. Mathematically, it means 

that ( )0  sin tx x = can always fulfil the condition of 
2

2

d

d

x
kx

t
= −  where the proportionality constant is 

k = ω2 .[If time t = 0 when 
0x x= , then ( )0  cos tx x = would have been the defining solution]  

 

There will be times when it would be useful to eliminate the variable t from the equations.  

Using the trigonometric identity 

                               

2 2

2 2

0 0

2 2 2 2 2

0

2 2

       sin cos 1

1

                   

Hence the velocity of a body under SHMi is given by 

                      

    

o

wt wt

x v

x x

x v x

v x x



 



+ =

+ =

+ =

=  −

   
   
   

 

 

Thus, the kinematic relationships of a S.H.M. can be summarized as follows: 

displacement x 

time t 

 

 

 

x 

ball on turntable displacement of 

ball’s shadow 



 
 

 
 

 

variation with x 

variation with t 

starting at x = 0  

when t = 0 

starting at x = x0  

when t = 0 

x  ( )0  sinx tx =  ( )0  cosx tx =  

v 2 2

0 xv x −=   ( )0  cosx tv  =  ( )0  sin tv x = −  

a 2a x= −  ( )2

0  sina x t = −  ( )2

0  cosa x t = −  

 

Quick Check: How would the variation of x, v and a with respect to t differ when oscillator starts 

moving in the negative direction? 

 

Example 1 (a) 

An oscillation has amplitude 5.0 mm and a period T of 0.180 s. At time t = 0, its displacement is at 

the equilibrium position and travelling downwards. 

Determine for the oscillation, its 

 (i) angular frequency, 

 (ii) maximum velocity and 

 (iii) maximum acceleration. 

   

( )

( )

( )

( )

( )

22 2

0

2
2

0 0
0 0

2

0 0 0

1 2
3 3

1 2

iii     ii     
2

i     2 0

2 2 2

0 18

34 9 rad s 2 25 10 5 10
0 18 0
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 m s  m0  s9

x

f vT

x x

a xv x

a
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xx
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


  

  


 
−

− −

− −

 −

= = −

   
= =    

   

=  
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        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 
 

 
 

Example 1 (b),(c) 

Write an expression for the following relationships, taking upwards as positive. 

 (i) displacement x with time t, 

 (ii) velocity v with time t, and 

 (iii) acceleration a with time t. 

   

 

( )

( )

( )

( )

( )

( )

( )

( )

( )

ax v

x t x t x t

. t . t . t
. . .

2

0 0 0

iii      i    ii      

 sin  cos  sin

2 2 2
0 0050  sin 0 175  cos 6 09  sin

0 180 0 180 0 180

    

  

= − = − =

     
= − = − =     

     

 

 

 

 

 

 

 

 

 

 

(c) Determine the displacement, velocity and acceleration when 

 (i) t = 0.030 s, and  

 (ii) t = 0.210 s 

 

 

 

( )

( )

( )

( )

( )

1

2

2 2
0.0050sin 0.030 0.0050sin 0.210

0.180 0.180

0.00433 m 0.00433 m

2 2
0.175cos 0.030 0.175cos 0.210

0.180 0.180

0.0875 m s 0.0875

2
6.09sin 0.030

0.180

5.27 m s

x x

v v

a

 

 



−

−

   
= − = −   

   

= − = −

   
= − = −   

   

= − = −

 
=  

 

=

( )

1

2

 m s

2
6.09sin 0.210

0.180

5.27 m s

a


−

−

 
=  

 

=

 

 

 

 

 

 

 

 

 



 
 

 
 

Acceleration a and velocity v against the same displacement axes will yield:  

 
 

Example 2 

The graph shows the variation with displacement x of acceleration a of a body exhibiting simple 

harmonic motion. What is the amplitude and period of motion? 

 

 

 

ω2x0 

 – ω2x0 

x0 – x0 x 

a 

ωx
0
 

 – ωx
0
 

x 

v 

x
0
 – x

0
 

 

a = – ω2x 

0 

Note:  

When sketching 

graphs involving 

oscillations, do not 

extend beyond the 

amplitudes (i.e. x0 

and – x0). 

 

0 

10 

 – 10  

5.0 – 5.0 

x / cm 

a / m s-2 

0 

 

 amplitude / cm period / s 

A 5.0 0.44 

B 5.0 14 

C 10 0.44 

D 10 14 

 

 



 
 

 
 

The variations with time for displacement x, velocity v and acceleration a: 

 

phase difference 

x-t v-t a-t x-t 

2


 =    =  

 
2


 =   

t 

x 

v 

a 

t 

t 

0 

0 

0 

  

T 

    

T 2T 

  

    

T 2T 
  

 

 

 

x0 

– ωx0 

– x0 

ωx0 

ω2x0 

– ω2x0 

 
2T 

  



 
 

 
 

Example 3 

The variations of displacement x and  

the acceleration a with time t of a body  

performing simple harmonic motion are  

as shown.  Determine the period of  

the oscillation T. 

 

Solution 

 

 

( )

2

2

2

at  0,

2.0 m

18 

2
18 2.0

2.09 s

m s

a

t

x

x

T

a

T





−

= −

 
− = −  

 

=

=

=

=

 

 

Example 4 

 
 

 

The diagram shows the displacement-time graph for a body performing simple harmonic motion. 

(a) List the regions in which the velocity and acceleration are in the same directions. 

(b) List the regions in which the velocity and acceleration are in the opposite directions. 

 

Solution 

T 
t / s 

a / m s
-2

 

0 

 

T 
t / s 

x / m 

0 

 

 (a) II, IV 

 (b) I, III 

 

I II III IV 

I 

II 

III 

IV 

  v 

a 

  

a 

v 

v 

a 
  

  

a 

v 

18 

T 
– 18 

t / s 

a / m s
-2

 

0 

 

2 

T 
– 2 

t / s 

x / m 

0 

 



 
 

 
 

Example 5 

 
 

 

Considering the energies of an SHM can help to simplify the analysis of the oscillatory motion. 

 

When a body is performing free oscillations, there is continuous and periodic interchange of its kinetic 

energy and potential energies. The body also experiences no energy loss or gain due to the absence 

of resistive or driving forces acting on the system.  

 

For a pendulum bob undergoing free oscillations:  

 

position kinetic energy 
gravitational 

potential energy 

amplitude (a) 0 max 

moving from 

(a) to (b) 
GPE converted to KE 

equilibrium 

position (b) 
max 0 

moving from 

(b) to (c) 
KE converted to GPE 

amplitude (c) 0 max 

 

Note:  There are similar energy conversions for an oscillating vertical spring-mass system. 

 Depending on how the question is set up, we may need to sum up gravitational potential 

 energy and elastic potential energy for total potential energy. 

 

 

 

A simple harmonic oscillator has a time period of 10 seconds. Which equation relates its 

acceleration a and displacement x? 

A   B  

C  D  

 

Solution 

 

(a) 

(b) 

(c) 



 
 

 
 

kinetic energy with displacement potential energy with displacement 

 

( )

2

2
2 2

0

2 2 2

K

0

1

2

1

2

1

2

E mv

m x x

m x x





=

 =  −
 

= −

 

designate total potential energy 
P 0E =  at equilibrium  

such that all the KE is converted to PE at amplitude positions: 

 

( )

= +

= +

=

=

= −

= − −

=

total

total K, max

P total K

2

,max

2 2

2 2 2 2 2

0 0

2

0 (when KE is a m

 

ax, PE is zero)

1

2

then

1

    

2

1

 

1

2

2

K P

K

o

E E E

E

E E

m x

E E E

m x m x x

m x



 



 

 

    

 

 

x0 – x0 x 

  

 

  

v 

0 

energy 

Note:  
When sketching 

graphs involving 

oscillations, do not 

extend beyond the 

amplitudes (i.e. x
0
 

and – x
0
). 

  



 
 

 
 

kinetic energy with time potential energy with time 

( )

2

2

0

2

K

2 2

0

1

2

1
cos

2

1
cos

2

E mv

m x

x t

t

m

 

 

=

=   

=

 

 

( )

( )

( )

2 2 2 2 2

P to

0 0

2 2 2

0

2

l

2

ta

0

K

2

1 1
cos

2 2

1
1 cos

2

1
sin

2

E E E

m x m x t

m x t

m x t

  

 

 

= −

= −

 = − 

=

 

 

The variation of total energy totalE , total potential energy PE  and kinetic energy KE  with time: 

 
Note:  (i) There are two complete cycles of energy conversion in one period of oscillation. 

  (ii) The total energy of an oscillating system is directly proportional to the square of 

   amplitude 
2 2

total 0

1

2
E m x

 
=  
 

 

 

Example 6 

A mass of 8.0 g oscillate in simple harmonic motion with an amplitude of 5.0 mm at a frequency of 

40 Hz.  Find the total energy of this simple harmonic oscillator.                   

 

Solution 

( )

( ) ( )( ) ( )

2

2

total K, max max

2

0

2
3 3

2 2

0

2

1

2

1
2

2

1
8.0 2 5.0

2

6.

1

2

10 40 10

J3  1 m

E mv

f

E

m x

m x





− −

=

=

=

 =

=

=

 

t 0 

    

T 2T 

  

v 

  

energy 

  



 
 

 
 

Unlike undamped oscillations 

(free oscillations), a body with 

damped oscillations will lose 

energy until it eventually stops. 

 

Work is done against the 

resistive forces in a damped 

oscillation. The degree of 

damping will determine the rate 

of energy loss from the oscillator.  

 
The degree of damping refers to the amount of resistance to motion the oscillator is subjected to: 

 

degree of 

damping 
description variation with time 

Light 

• Undergoes a number of 

complete oscillations 

• Amplitude decreases 

exponentially with time 

 

Critical 

• No oscillation takes place 

• Shortest time needed for the 

oscillator to come to a state 

of equilibrium 

Heavy 

• No oscillation takes place 

• Displacement decreases 

exponentially with time 

• Time needed for the 

oscillator to come to a state 

of equilibrium is longer than 

critical damping 

x 

t 

T 2T 

t 

t 

light 

critical 

T 2T 3T 4T 

heavy 

energy 

t T 2T 

x 

total energy 
kinetic energy 
potential energy 

t 

Damped oscillations are oscillations in which 

 

the amplitude decreases with time 
as a result of dissipative forces that reduces the total        

energy of the oscillations. 

card oil 

light 

degree of damping 

heavy 



 
 

 
 

 

A car suspension supports the chassis (body) of the car onto 

the axles of the car wheels. A good suspension system should 

 

1. partially absorb the impact of a bump in the road  

for the comfort of the passengers  

2. return the car to equilibrium quickly  

so that it is ready to respond to other bumps on the road. 

 

The desired degree of damping is near critical damping. 

 

other degrees 

of damping 
effects 

none / too light 

car will bounce after a bump 

and continue oscillating for a long time 

uncomfortable for passengers 

too heavy 

car takes a long time to return to 

equilibrium  

cannot respond to further bumps 

 

Modern car suspensions consist of a spring and a shock 

absorber, which typically uses oil as a damper. 

 

  

Forced oscillations are the opposite 

of free oscillations.  

 

In free oscillations, a once-off input 

of energy initiates the periodic 

oscillations at the system’s natural 

frequency. 

 

In contrast, energy is continuously 

supplied and the system is forced to 

vibrate at the frequency of the 

external driver. 

 

As a simple example, a hand moving up and down 

repeatedly while holding onto a spring with a mass attached 

to it will cause the mass to oscillate.  

 

The hand is providing an external periodic force (resulting 

in a continuous energy input) to the spring-mass system. 

 

 

tyre 

axle 

suspension 

spring 

shock 

absorber 

with oil 

inside 

load due to 

weight of car 

force from 

the ground 

 

Forced oscillations are oscillations where there 

is a 

 

continuous input of energy  

by an external periodic force that 

maintains the oscillation amplitude. 

 

hand moving up 

and down 

mass oscillates 



 
 

 
 

Some other examples of forced oscillations: 

 

• A child on a swing being pushed by a parent standing at one end. 

• A car driven over a series of evenly spaced humps at a constant speed. 

• The body of a washing machine vibrating due to the spinning of its drum. 

 

In an ideal situation in which there is no damping, the total energy of the 

oscillator of a forced oscillation keeps adding up and so the total energy 

(Correspondingly the amplitude x0 since 2

total

2

0

1

2
E m x= ) approaches infinity.  

 

However, with damping, the total energy (and amplitude) of a body initially at rest, will increase until 

a steady state of constant amplitude. This is when  

 

rate of transfer of energy rate of loss of energy

from external driver from oscillating system 

to oscillating system as work done against resistive forces 

=  

 

The driving frequency provided by the external periodic force determines the frequency that the 

system oscillates at. The driving frequency need not be the same as the natural frequency.  

 

A frequency response graph shows how the amplitude of oscillations vary with the frequency of the 

external periodic force. A typical frequency response of a lightly damped oscillator is as shown. 

 

 
 

As the frequency of the external driver increases from zero, the amplitude of the forced oscillation 

increases.  

 

The amplitude reaches a maximum when the external driving frequency matches that of the natural 

frequency of the system.  

 

Beyond that point, the amplitude decreases with further increases in driving frequency. 

 

When external driving frequency matches the natural frequency of the system, resonance occurs. 

natural frequency 

 f
natural

 

driving 

frequency, f
d
 

oscillator 
amplitude 



 
 

 
 

 

 
The degree of damping determines the frequency response and sharpness of the resonance. 

 

degree of 

damping 
amplitude 

frequency 

response 
sharpness 

lighter 

damping 
consistently higher 

Maximum amplitude 

very near (or equal) 

natural frequency 

sharper 

heavier 

damping 
consistently lower 

Maximum amplitude 

shifts lower than 

natural frequency 

(period T is longer) 

flatter 

 

 

 

 
 

 

 

Resonance is a phenomenon in which  

 

the amplitude of an oscillatory motion is at maximum because   

there is maximum rate of transfer of energy 

from the external driver to the oscillating system.  

 

This occurs when the  

driving frequency of external periodic force equals to natural frequency of the system.  

no damping 

more damping 

oscillator 
amplitude 

natural frequency 

 f
natural

 
driving 

frequency, f
d
 



 
 

 
 

(a) Microwave Cooking 

The driving frequency of the microwave matches the natural frequency of 

vibration of water molecules.  When food containing water molecules is 

placed in the oven, there is maximum transfer of energy to the water 

molecules which is set into resonance. This results in the water molecules 

oscillating with maximum amplitude and greater vibrational kinetic energy 

and is indicated with an increase in temperature. The heated water transfer 

heat to other parts of the food. 

 

(b) FM radio reception 

The driving frequency of the radio tuner is adjusted to match the natural  

frequency of the broadcast in order to hear it. There is maximum transfer of 

energy and resonance occurs. Resonance amplifies the signals contained in 

the selected frequency while the radio waves of other frequencies are 

diminished. 

 

(c) Magnetic Resonance Imaging 

A strong electromagnetic field is made to operate at driving frequencies 

which matches that of atomic nuclei of the molecules in a human body. As a 

result, maximum energy is transferred to the body by the field.  When 

resonance occurs, the atomic nuclei of the molecules oscillate with maximum 

amplitude. By analyzing the pattern of energy absorption, a computer-

generated image can be produced.  

 

 (d) Musical instruments 

The external driving force is applied at a frequency that matches the natural 

frequencies of the strings, or columns of air or physical shapes/conditions of 

string, wind and percussion instruments respectively. Maximum energy is 

transferred to instruments which in turn oscillate with maximum amplitude.  

 

Buildings and Structures 

All physical structures, by virtue of their shape, dimensions, material and other 

physical properties, have natural frequencies. The London Millennium 

Footbridge was closed after 2 days of opening because the frequency of 

motion from pedestrians matched the natural frequency of the bridge, causing 

it to sway with alarming amplitude. The bridge was closed for 2 years of 

remediation works.  

 

During earthquakes, buildings are forced to oscillate by the seismic waves. If 

the frequency of the seismic waves approaches the natural frequency of the 

buildings, resonance occurs. This results in large amplitude oscillations of the 

buildings which increases the risks of collapse. 

 

Wine glasses, have natural frequencies too. You can hear the natural 

frequency by lightly tapping on a glass, or running a damp finger around the lip 

of the glass to set it into oscillation.   



 
 

 
 

 

oscillations 

complete to-and-fro motion between two limits 

 initiated by one perturbation driven by external driver simplest type to study 

free oscillations 

constant amplitude w/o energy 

loss or gain as no driving or 

resistive force acts on system 
 

solution to equation  

resonance 

driving frequency of external periodic 

force equals to natural frequency of 

the system, resulting amplitude is 

maximum as there is maximum rate of 

transfer of energy from the external 

driver to the oscillating system 

eliminate time variable 

forced oscillations 

continuous input of energy by 

external periodic force that 

maintains oscillation amplitude 

simple harmonic motion 

oscillatory motion  

where acceleration is 

directly proportional to 

displacement from 

equilibrium position and 

directed opposite to 

displacement 

  

displacement 

 

velocity 

 

acceleration 

 

  

velocity 

 

velocity-displacement  

v-x 

 

  

will vibrate at 

 
  

  

variation with time 

  equation for ellipse 

natural frequency 

frequency that system 

vibrates at in absence of 

driving or resistive forces 

if external driving  

frequency matches 

add 

resistive  

force(s) 

damped oscillations 

amplitude decreases with time as a result of 

dissipative forces that reduces the total 

energy of the oscillations. 

variation with time 

 

frequency response 

 

heavier damping:  

lower amplitude,  

less-sharp peak and 

lower resonant frequency 

energy ∝ amplitude2 

 

critical damping 

no oscillations occur and displacement is 

brought to zero in shortest possible time 

pros 

microwave, MRI, 

radio broadcast 

cons 

structural 

failures 

phase difference 

 

 a-t vs x-t 

 
x-t vs v-t 

v-t vs a-t 

  



 
 

 
 

We embark on another family of topics dealing with waves and oscillations in this topic. The simple 

harmonic motion of a single, individual body is the building block of “bulk” phenomenon such as 

waves and interference.  

You may use the space below for your own mindmaps and summaries. 

 

 

 

 

 

 


