
2024 JC 1 H2 Computing (9569)

1

Random Number
Random numbers are useful for a variety of purposes, such as generating data encryption

keys, simulating, and modelling complex phenomena and for selecting random samples from

larger data sets. They have also been used aesthetically, for example in literature and music,

and are of course ever popular for games and gambling.

When one single random number is concern, that random number should be selected

from a set of possible values, where the selection of every single value in the set is

equally probable, i.e., a uniform distribution. However, when considering a sequence of

random numbers, the selection of each random value must be statistically independent

of the others.

Random Number Generator (RNG)

With the advent of computers, programmers recognised the need for a means of introducing

randomness into a computer program. However, surprising as it may seem, it is difficult to

get a computer to do something by chance.

Random numbers take on a large role in the world of computing. In real life, a fundamental

use of random numbers can be seen in lotteries and lucky draws, where computer

programs are used to generate random numbers to `decide the winning tickets.

In the world of computing, random numbers can be used to generate data encryption keys,

or to select an independent random sample from the data set.

A computer follows its instructions blindly and is therefore completely predictable. (A

computer that does not follow its instructions in this manner is considered broken.)

There are two main approaches to generating random numbers using a computer:

1. Pseudo-Random Number Generators (PRNGs),

2. True Random Number Generators (TRNGs).

The approaches have distinct characteristics, and each has its pros and cons.

2024 JC 1 H2 Computing (9569)

2

True Random Numbers

Random numbers obtained from certain uncontrollable physical phenomena.

The physical phenomenon can be very simple, like the little variations in somebody's mouse

movements or in the amount of time between keystrokes.

A good physical phenomenon to use is a radioactive source. The points in time at which a

radioactive source decays are completely unpredictable, and they can quite easily be

detected and fed into a computer, avoiding any buffering mechanisms in the operating

system.

For most real-life applications, a pseudo-random number is sufficient. For example, a CD

player in “random” mode is really playing in pseudo-random mode, with a pattern that is

discernible if you listen carefully enough. Using pseudo-random numbers is perfectly

acceptable in this case because there’s no quantitative advantage in the degree of

randomness.

Can a computer generate a truly random number?

Computers are deterministic devices (i.e. given and using the same input, it will follow a

fixed set of instructions and therefore produce the same output). For true random numbers

to be generated, the device generating the random number has to produce totally

unpredictable and unbiased output from the same input source. It is impossible to

apply reverse engineering on truly random numbers. There are devices that generate

numbers that claim to be truly random. They rely on unpredictable processes like thermal or

atmospheric noise rather than human-defined patterns.

You can program a machine to generate what can be called “random” numbers, but the

machine is always at the mercy of its programming. On a completely deterministic

machine you cannot generate anything you could really call a random sequence of

numbers, because the machine is following the same algorithm to generate them.

Typically, that means it starts with a common ‘seed’ number and then follows a pattern. The

results may be sufficiently complex to make the pattern difficult to identify, but because it is

2024 JC 1 H2 Computing (9569)

3

ruled by a carefully defined and consistently repeated algorithm, the numbers it produces are

not truly random. They are what we call ‘pseudo-random’ numbers.

Pseudo-Random Number Generators (PRNGs)

Pseudo Random Number Generator (PRNG) refers to an algorithm that uses

mathematical formulas to produce sequences of random numbers. PRNGs generate a

sequence of numbers approximating the properties of random numbers.

A PRNG starts from an arbitrary starting state using a seed state. With a starting point, a

sequence of pseudo-random numbers can be generated in a short time. Additionally, these

numbers can also be reproduced later.

Hence, the random numbers generated by PRNGs are deterministic and efficient.

How a fundamental PRNG work?

The Linear Congruential Generator is most common and oldest algorithm for generating

pseudo-randomised numbers. The generator is defined by the recurrence relation:

By choosing the following values:

m = 9, a = 2, c = 0, X0 = 1

We have, Xn+1 = (2Xn + 0) % 9

Hence, X0 = 1 X4 = (16 % 9) = 7

 X1 = (2 % 9) = 2 X5 = (14 % 9) = 5

X2 = (4 % 9) = 4 X6 = (10 % 9) = 1

X3 = (8 % 9) = 8 X7 = (2 % 9) = 2

Given that:
X is a sequence of pseudo – random values,
m > 0, (m – modulus),
0 < a < m (a - multiplier),
0 ≤ c < m (c - increment),
0 ≤ X0 < m (X0, seed or start value)

Xn+1 = (aXn + c) % m

2024 JC 1 H2 Computing (9569)

4

Characteristics of a PRNG

 Efficient: PRNG can produce many numbers in a short time and is advantageous for

applications that need many numbers.

 Deterministic: A given sequence of numbers can be reproduced later if the starting point

in the sequence is known. Determinism is handy if you need to replay the same sequence

of numbers again at a later stage.

 Periodic: PRNGs are periodic, which means that the sequence will eventually repeat

itself. While periodicity is hardly ever a desirable characteristic, modern PRNGs have a

period that is so long that it can be ignored for most practical purposes.

Important

 You are required to know how to generate random numbers in their chosen programming

language.

 You are likely required to use random numbers in the problems they solve and so, they

should also be able to include them in their pseudocode.

Using a random number generator in Pseudocode

It is important to note that any use of a function to generate random numbers must be clearly

explained.

The following are two commonly used random number generator functions:

1. RND(): generates and returns a single random real number between 0 and 1.

2. RANDOMBETWEEN(min, max): generates a random integer between the integers min

and max.

RND() function

Returns a single random number.

2024 JC 1 H2 Computing (9569)

5

The RND() function returns a float value less than 1 but greater than or equal to 0. (i.e. [0.0,

1.0)) The value of number determines how RND()generates a random number:

To produce random integers in a given range, the following expression can be used:

Pseudocode – To generate a random integer value from 1 to 6 (both incl)

FUNCTION RANDOMBETWEEN (min: INTEGER, max: INTEGER) RETURNS INTEGER:

 DECLARE rand_no: INTEGER

 rand_no = INT((max - min + 1) * RND() + min)

 RETURN rand_no

ENDFUNCTION

// -----------Main program-------------

DECLARE random_no: INTEGER

random_no = RANDOMBETWEEN(1, 6)

Generating a Random Number in Python

randint(a, b)
Returns a random integer N such that

a <= N <= b. i.e. [a,b]

random()

Returns a random floating point number in the
range

[0.0 to 1.0).

INT((upperbound - lowerbound + 1) * RND() + lowerbound)

// upperbound is the highest number in the range, and

// lowerbound is the lowest number in the range

2024 JC 1 H2 Computing (9569)

6

randrange(start, stop, step)

Return a randomly selected element
from randrange(start, stop, step).

Expected output:

Expected output of randrange(1, 10, 3)
//incl 1, not incl 10

Integer values [1, 4, 7]

True-Random Number Generators (TRNGs)

In comparison with PRNGs, TRNGs extract randomness from physical phenomena and

introduce it into a computer. There are many other ways to get true randomness into your

computer. A good physical phenomenon is to use is a radioactive source, as radioactive

source decays are completely unpredictable, and they are easily be detected to have them

fed into a computer. Another suitable physical phenomenon is atmospheric noise, which

can be picked up easily by a normal radio. For instance, the background noise picked up

from an office or laboratory can be used to extract randomness, but consider factors like

operating hours, busy hours, background noise etc., need to be taken into consideration

as they reduce the level of randomness.

Regardless of which physical phenomenon is used, the process of generating true

random numbers involves identifying little, unpredictable changes in the data.

2024 JC 1 H2 Computing (9569)

7

Pros & Cons of TRNGs

The characteristics of TRNGs are quite different from PRNGs. First, TRNGs are generally

more inefficient as compared to PRNGs, taking considerably longer time to produce numbers.

They are also nondeterministic, meaning that a given sequence of numbers cannot be

reproduced, although the same sequence may of course occur several times by chance.

TRNGs should not be periodic.

Comparison between PRNG and TRNG

Characteristic Pseudo-Random Number Generator True Random Number Generators

Efficiency Excellent Poor

Determinism Deterministic Nondeterministic

Periodicity Periodic Aperiodic

Application of PRNG & TRNG

Application Most Suitable Generator

Lotteries and Draws TRNG

Games and Gambling TRNG

Random Sampling (e.g., drug screening) TRNG

Simulation and Modelling PRNG

Security (e.g., generation of data
encryption keys)

TRNG

2024 JC 1 H2 Computing (9569)

8

Programming Exercises

Exercise 1

(i) Randomize and print the outcome of a 6 – sides unbiased die and roll this die for n

100 independent trials. Print the outcomes of each trial.

(ii) Obtain the number of trials as an integer input from user and derive the average result

where:

average = (sum of the outcomes taken from the n trials) ÷ n

(iii) The outcome of rolling an unbiased die is tabulated in a frequency table. Display the

frequency table of all the possible outcomes taken from the n trials.

Exercise 2

Using Python’s built-in function random(), create:

(i) myRandomInt(a,b) that returns a randomised integer value that is in the range of

{a,…,b}, where a and b are positive integers and b > a.

(ii) myRandomIntHalfOpen(a, b), that returns a randomised integer value that is in the

range of {a,…,b-1}, where a and b are positive integers and b > a.

	Random Number Generator (RNG)
	True Random Numbers
	Can a computer generate a truly random number?
	Pseudo-Random Number Generators (PRNGs)
	How a fundamental PRNG work?
	Characteristics of a PRNG
	Using a random number generator in Pseudocode
	Pseudocode – To generate a random integer value from 1 to 6 (both incl)
	Generating a Random Number in Python
	True-Random Number Generators (TRNGs)
	Pros & Cons of TRNGs
	Application of PRNG & TRNG
	Programming Exercises
	Exercise 1

	Exercise 2

