National Junior College 2016 – 2017 H2 Further Mathematics NATIONAL Topic F7: Further Complex Numbers (Assignment 1)

Name:		Suggested Duration:	65 min
1.	Find the fourth roots of $-8 + (8\sqrt{3})i$ exactly in the form $re^{i\theta}$.		[3]
	Henc	e find the roots of the equation $z^8 + 16z^4 + 256 = 0$ exactly in the form $re^{i\theta}$.	[3]
2.	(i)	Without using a calculator, show that $(1 - \sqrt{3}i)^{-12} = \frac{1}{4096}.$	[2]
	(ii)	Hence solve the equation $z^{6} \left(1 - \sqrt{3}i\right)^{12} - 1 = 0,$	
		giving the roots in the form $re^{i\theta}$, where $r > 0$ and $-\pi < \theta \le \pi$. Show the root Argand diagram.	ts on an [4]
	(iii)	Show that $(z - re^{i\theta})(z - re^{-i\theta}) = z^2 - 2rz\cos\theta + r^2$.	[2]
	(iv)	Use your answers in parts (ii) and (iii) to express $z^6 (1-\sqrt{3}i)^{12} - 1$ as the pro- three quadratic factors with real coefficients, giving each factor in non-trigonom	oduct of metrical
		form. (2014/PJC/	[3] /P1/Q8)
3.	(i)	Use the formula for the sum of a geometric series to show that $\sum_{k=1}^{n} (z + z^{2} + + z^{k}) = \frac{nz}{1-z} - \frac{z^{2}}{(1-z)^{2}} (1-z^{n}), z \neq 1.$	[3]
	(ii)	Given that $z = \cos \theta + i \sin \theta$, show that $\frac{z}{1-z} = \frac{i}{2\sin \frac{\theta}{2}} \left(\cos \frac{\theta}{2} + i \sin \frac{\theta}{2}\right).$	[2]
		$\sum_{n=1}^{n} (1 + 1) \sum_{n=1}^{n} (1 + 1) \sum_{n=1}^{n} (n+1) \sum_{n=1}^{n} (n+1) \theta$	[<i>e</i>]

$\sum_{k=1}^{n} (\sin\theta + \sin 2\theta + \dots + \sin k\theta) = \frac{(n+1)\sin\theta}{4\sin^2\frac{\theta}{2}}$ Deduce that [5]

(2003/FM/TPJC/P1/Q6)

4. Use de Moivre's theorem to prove that

$$\cos 5\theta = 16\cos^5 \theta - 20\cos^3 \theta + 5\cos\theta.$$
 [3]

Show that $\cos \frac{\pi}{10}$ is a root of the equation $16x^4 - 20x^2 + 5 = 0$, and obtain the other three roots in trigonometric form. [3]

Hence show that
$$\cos\frac{\pi}{10}\cos\frac{3\pi}{10} = \frac{\sqrt{5}}{4}$$
. [3]

(2002/FM/TJC/P1/Q10)