Qn	Solution	Marks
1	$100^x + 10^{x+1} - 24 = 0$	
	$10^{2x} + 10(10^{x}) - 24 = 0$	B1 (correct quadratic)
	Let $y = 10^x$	
	$y^2 + 10y - 24 = 0$	
	(y+12)(y-2) = 0	M1 (factorise or
	y = -12 or $y = 2$	quadratic formula)
	$10^{x} = -12$ (rejected) $10^{x} = 2$	A1 (reject $10^x = -12$, do not accept if reject
	$\lg 10^x = \lg 2$	y = -12)
	$x = \lg 2$	A1
2	Let $f(x) = 3x^3 - 5x + 2$	
	$f(1) = 3(1)^{3} - 5(1) + 2 = 0$	B1
	By factor theorem , $x-1$ is a factor of $3x^3-5x+2$.	
	$3x^{3} - 5x + 2 = (x - 1)(3x^{2} + Ax - 2)$	
	Comparing coefficient of <i>x</i> ,	
	-5 = -2 - A	M1 (or long division: 2^{2})
	A = 3	must see $3x^2$) M1 (factors equate to 0)
	$(x-1)(3x^2+3x-2)=0$	WIT (lactors equate to 0)
	x = 1 or $x = \frac{-3 \pm \sqrt{(3)^2 - 4(3)(-2)}}{2(3)}$	A1 (for $x = 1$)
	$r = \frac{-3 \pm \sqrt{33}}{\sqrt{33}}$	
2(-)	6	A1 (for exact values)
3(a)	$y = (x-1)\sqrt{4x+1}$	
	$\frac{dy}{dx} = (4x+1)^{\frac{1}{2}}(1) + (x-1)\frac{1}{2}(4x+1)^{-\frac{1}{2}}(4)$	M1 (for chain rule), M1 (product rule)
	$= (4x+1)^{-\frac{1}{2}} \left[(4x+1) + 2(x-1) \right]$	M1 (factorise or combine to single fraction)
	$=\frac{4x+1+2x-2}{\sqrt{4x+1}}$	
	$=\frac{6x-1}{\sqrt{4}}$	A 1
	$\sqrt{4x+1}$	

2024 AMKSS 4E5N Prelim AMP2 Marking Scheme

Qn	Solution	Marks
3(b)	$\int_{2}^{6} \frac{6x-1}{\sqrt{4x+1}} \mathrm{d}x = \left[\left(x-1 \right) \sqrt{4x+1} \right]_{2}^{6}$	M1 (using (i))
	$\int_{2}^{6} \frac{6x}{\sqrt{4x+1}} \mathrm{d}x - \int_{2}^{6} \frac{1}{\sqrt{4x+1}} \mathrm{d}x = \left[\left(x-1 \right) \sqrt{4x+1} \right]_{2}^{6}$	
	$\int_{2}^{6} \frac{6x}{\sqrt{4x+1}} \mathrm{d}x = \left[\left(x-1 \right) \sqrt{4x+1} \right]_{2}^{6} + \left[\frac{\left(4x+1 \right)^{\frac{1}{2}}}{\frac{1}{2} \left(4 \right)} \right]_{2}^{6}$	M1 (integrate <i>their</i> $\frac{q}{\sqrt{4x+1}}$ correctly)
	$\int_{2}^{6} \frac{x}{\sqrt{4x+1}} \mathrm{d}x = \frac{1}{6} \left[(x-1)\sqrt{4x+1} + \frac{\sqrt{4x+1}}{2} \right]_{2}^{6}$	A1 (correct $\int_{2}^{6} \frac{x}{\sqrt{4x+1}} dx \text{ including}$
	$\int_{2}^{6} \frac{x}{\sqrt{4x+1}} \mathrm{d}x = \frac{1}{6} \begin{bmatrix} \left((6)-1 \right) \sqrt{4(6)+1} + \frac{\sqrt{1(6)+1}}{2} \right) \\ - \left(((2)-1) \sqrt{4(2)+1} + \frac{\sqrt{4(2)+1}}{2} \right) \end{bmatrix}$	$\frac{1}{6}$) M1 (substitute correct values in correct order)
	$=3\frac{5}{6}$	A1
4(a)	x < -2 or x > 3 (x+2)(-x+3) < 0 -x ² + x + 6 < 0 -3x ² + 3x + 18 < 0	M1 (accept (x+2)(x-3) > 0; y = -3(x+2)(x-3)) A1
	p=5	A1
4(b)	q = 18	
4(D) (i)	$qx+1 = -3x^2 + x + q$	M1 (eliminate x or y)
	$3x^2 + (q-1)x + 1 - q = 0$	
	$(q-1)^2 - 4(3)(1-q) = 0$	M1 (correct D and $= 0$)
	$q^2 - 2q + 1 - 12 + 12q = 0$	
	$q^2 + 10q - 11 = 0$	
	(q+11)(q-1) = 0	M1 (factorise or
	q = -11 or $q = 1$	A1
4(b)	$3x^2 - 12x + 12 = 0$	
(ii)	$x^2 - 4x + 4 = 0$	
	$(x-2)^2 = 0$	M1 (factorise or
	x = 2	quadratic formula
	y = -21	A1 (correct x)
	R(2, -21)	A1 (correct <i>y</i>)

Qn	Solution						Marks
5(a)						· · · · · · · · · · · · · · · · · · ·	
(i)	Т	2.2	5.0	7.8	10	12.8	
	lg t	0.146	0.283	0.420	0.526	0.662	
	0.7 0.6 0.5 0.4 0.3 0.2 0.1 0		lg	t y = 0.04	87x + 0.0395		B2 (minus 1 for each incorrect point; minus 1 if axes not labelled)
	0	2 4	6	8	10 12	14	
	-						
(ii) (a)	lg t = 0.04 t = 1.10	(accept 1.0	17 to 1.13)				M1 (equate vertical intercept to lg <i>t</i>) A1 (both marks only given if graph is extended to find lg <i>t</i> -intercept)
5(a) (ii)	$\lg t = \lg a -$	+ lg(1.064)	kT				
(b)	$\lg t = \lg a$	$+kT \lg (1.00)$	54)				M1 (correct linear equation or equating gradient to $k \lg (1.064)$)
	Gradient = 0.0487						M1 (find gradient using
	$k \lg (1.064) = 0.0487$						line drawn)
		$k = \frac{0.048}{1000}$	7				
	lg(1.064)						
	= 1.807611629						
		=1.81 (a)	ccept 1.7 to	o 1.9)			Al
5(a) (iii)	Physical attributes such body fat of the diver different, pre-existing health conditions, materials of diving suit.					B1 (accept other logical reason based in context of question. Reject answers like values not accurate; different bodies take different time etc)	

Qn	Solution	Marks
5(b)	Gradient	
	-3-(-1)-2	
	$=\frac{1}{1-(-1)}=2$	B1 (correct gradient)
	Y - 3 = 2(X - 1)	M1 (subs point into
	Y = 2X + 1	equation using their
		gradient)
	$2 2^{2} + 1$	
	y = 2x y + 1	Al
6(a)	E D 15 cm H^{θ} c	
	F 4 cm	
	$\sin \theta = \frac{DG}{15}$ $DG = 15 \sin \theta$ $\cos \theta = \frac{HB}{4}$	M1 (to find <i>DG</i> , only given with correct θ and correct right-angle)
	$HB = 4\cos\theta$ Height of <i>D</i> from ground = $(4\cos\theta + 15\sin\theta)$ cm	M1 (to find <i>HB</i> , only given with correct θ and correct right-angle)
6(b)	$4\cos\theta + 15\sin\theta = R\cos(\theta - \alpha)$	
	$= R\cos\theta\cos\alpha + R\sin\theta\sin\alpha$	
	$R\cos\alpha = 4$	M1 (all correct minus 1
	$R\sin\alpha = 15$	if never write)
	$R = \sqrt{4^2 + 15^2}$	
	$=\sqrt{241}$	M1 (find <i>R</i>)
	$\tan \alpha = \frac{15}{4}$	M1 (form trigo equation, accept
	$\alpha = 75.06858282^{\circ}$	$\cos \alpha = \frac{4}{\sqrt{241}}; \sin \alpha = \frac{15}{\sqrt{24}}$
	$4\cos\theta + 15\sin\theta = \sqrt{241}\cos(\theta - 75.1^\circ)$) A1 (accept $15.5\cos(\theta - 75.1^{\circ})$)

Qn	Solution	Marks
6(c)	$\sqrt{241}\cos\left(\theta - 75.06^\circ\right) = 14$	
	$\cos(\theta - 75.06^{\circ}) = \frac{14}{\sqrt{241}}$	M1 for
	$\theta - 75.06^\circ = -25.60175686$	$\cos(\theta - their\alpha) = \frac{1+}{their R}$
	$\theta = 49.46682596^{\circ}$	
	= 49.5° (1 d.p.) Since $40^{\circ} < 49.5^{\circ} < 50^{\circ}$, the chock can secure the aircraft wheel.	A1 A1 (only given for correct θ)
7(a)	$12 = ke^{0.24(0)} + 8$	B1 (substitute $t = 0$ and
	12 = k + 8	equate to 12)
	k = 4	
7(b)	$21 = 4e^{0.24t} + 8$	
	$e^{0.24t} = \frac{13}{12}$	B1
	4	
	$\ln e^{0.24t} = \ln \frac{13}{4}$	M1 (take ln on both
	4	sides)
	$0.24t = \ln \frac{1}{4}$	
	t = 4.911062485	MI
	= 4.91 s (3 sf)	
	Since $t > 3$, he did not manage to pass point B before the traffic light turned red.	A1 (only given for correct <i>t</i> and comparison with 3 s)
7(c)	$s = \int 4e^{0.24t} + 8 dt$	with 5 by
	$s = \frac{50}{2}e^{0.24t} + 8t + c$	M1 (without <i>c</i>)
	Substitute $s = 0$ and $t = 0$	
	$\frac{50}{3}e^{0.24(0)} + 8(0) + c = 0$	
	$c = -\frac{50}{3}$	
	$50_{0.24t}$, $50_{0.24t}$	
	$s = \frac{1}{3}e^{axx} + 8t - \frac{1}{3}$	A1 (with correct c)
	$s = \frac{50}{3}e^{0.24(4.911)} + 8(4.911) - \frac{50}{3}$	M1 (sub their <i>t</i> from (ii))
	= 76.78849988 m	
	Average speed 76 78849988	M1 (divide their <i>t</i> by
	$=\frac{70.78649900}{4.911062485}$	their s)
	=15.63582221	
	=15.6 m/s (3sf)	A1

Qn	Solution	Marks
8(a)	${}^{n}C_{r}x^{n-r}\left(\frac{k}{2x}\right)^{r}$ Power of x	B1 (correct general term, don't need to expand)
	= n - r - r = $n - 2r$ If <i>n</i> is an odd integer , since 2r is even, $n - 2r$ is an odd integer. Hence <i>x</i> only has odd powers in every term.	B1 (explain using power)
8 (b)	11 - 2r = 7	
	2r = 4	
	r = 2	
	Term in x^7	
	$={}^{11}C_2(x)^9\left(\frac{k}{2x}\right)^2$	M1 (using <i>their</i> general term to find x^7)
	$=\frac{55}{4}k^2x^7$	
	Coefficient of $x^7 = \frac{55}{4}k^2$	A1 (or B2)
8(c)	$\left(x^2 - \frac{k}{2} + \frac{k^2}{4x^2}\right) \left(x + \frac{k}{2x}\right)^{12}$	
	$= \left(x^{2} - x\left(\frac{k}{2x}\right) + \left(\frac{k}{2x}\right)^{2}\right)\left(x + \frac{k}{2x}\right)\left(x + \frac{k}{2x}\right)^{11}$	M1 (separate into
	$= \left(x^{3} + \left(\frac{k}{2x}\right)^{3}\right) \left(x + \frac{k}{2x}\right)^{11}$	$\left(x + \frac{ky}{2}\right)\left(x + \frac{ky}{2}\right)$) M1 (using sum of cubes)
	$= \left(x^3 + \frac{k^3}{8x^3}\right) \left(x + \frac{k}{2x}\right)^{11}$	No mark if they did not show $\left(x^3 + \left(\frac{ky}{2}\right)^3\right)$
	Alternative method:	$\begin{pmatrix} 2 \end{pmatrix}$
	$\left(x^2 - \frac{k}{2} + \frac{k^2}{4x^2}\right) \left(x + \frac{k}{2x}\right)^{12}$	
	$= \left(x^{2} - \frac{k}{2} + \frac{k^{2}}{4x^{2}}\right) \left(x + \frac{k}{2x}\right) \left(x + \frac{k}{2x}\right)^{11} M1$	
	$= \left(x^{3} + \frac{kx}{2} - \frac{kx}{2} - \frac{k^{2}}{4x} + \frac{k^{2}}{4x} + \frac{k^{3}}{8x^{3}}\right) \left(x + \frac{k}{2x}\right)^{11}$ M1 (show expansion	
	$= \left(x^3 + \frac{k^3}{8x^3}\right) \left(x + \frac{k}{2x}\right)^{11}$	

Qn	Solution	Marks		
8(d)	In the expansion of $\left(x + \frac{k}{2x}\right)^{11}$,			
	Term in $x = {}^{11}C_5(x)^6 \left(\frac{k}{2x}\right)^5 = \frac{231}{16}k^5x$	M1 (using <i>their</i> general term to find x)		
	$\frac{55}{4}k^2\left(\frac{k^3}{8}\right) + \frac{231}{16}k^5(1) = -577$	form equation)		
	$\frac{517}{32}k^5 = -577$			
	$k^5 = -\frac{18464}{517}$			
	k = -2.044405542 = -2.04 (3sf)	A1		
9(a)	The points of intersection are $(-15, 15)$ and $(-5, 5)$.			
	Midpoint of these points of intersection			
	$=\left(\frac{-15+(-5)}{2}, \frac{15+5}{2}\right)=(-10, 10)$	B1 (correct midpoint)		
	Equation of line passing through the centres of C_1 and C_2 :			
	y - 10 = 1(x + 10)	M1 (find equation of line passing pass through		
	y = x + 20	centre)		
9(b)	Let the centre of C_1 be $(a, a+20)$			
	$\sqrt{\left(a - \left(-5\right)\right)^2 + \left(a + 20 - 5\right)^2} = 10$	M1 (sub <i>their equation</i>		
	$(a+5)^2 + (a+15)^2 = 100$	into length formula)		
	$a^2 + 10a + 25 + a^2 + 30a + 225 = 100$			
	$2a^2 + 40a + 150 = 0$			
	$a^2 + 20a + 75 = 0$			
	(a+15)(a+5)=0	M1 (factorise or quadratic formula)		
	a = -5 or -15	A 1 A 1		
	Centres of C_1 and C_2 are $(-5, 15)$ and $(-15, 5)$.	AI, AI		

Qn	Solution	Marks
9(c)	Centre of C_3 is $(-10, 10)$	
	Distance from $(-10, 10)$ to $(-15, 5)$	
	$=\sqrt{\left(-10-(-15)\right)^2+(10-5)^2}$	M1 (find distance from
	$=\sqrt{50}$ units	<i>their centre</i> to midpoint) (or find distance between
	Radius of C_3	centres of C_1 and C_2)
	$=\sqrt{50}+10$ units	M1 (<i>their distance</i> $+ 10$ units) (or (distance
		between centres of C_1
		and C_2)/2 +10)
	Equation of circle C_3 is	M1 (form equation using
	$(x-(-10))^{2}+(y-10)^{2}=(\sqrt{50}+10)^{2}$	<i>their radius</i> and
	$(x+10)^{2} + (y-10)^{2} = 50 + 20\sqrt{50} + 100$	(-10, 10))
	$(x+10)^{2} + (y-10)^{2} = 150 + 100\sqrt{2}$	A1
	20	
	C2	
	10	
	C1	

Qn	Solution	Marks
10	$\frac{dy}{dt} = e^{\sqrt{3}x} \left(\frac{d}{dt} \cos x \right) + \cos x \left(\frac{d}{dt} e^{\sqrt{3}x} \right)$	M1 for product rule
(a)	$\frac{d}{dx} = \epsilon \left(\frac{d}{dx}\cos x\right) + \cos x \left(\frac{d}{dx}e^{-\epsilon}\right)$	M1 for $-\sin x$
	$= -e^{\sqrt{3}x}\sin x + \sqrt{3}e^{\sqrt{3}x}\cos x$	M1 for $\sqrt{3}e^{\sqrt{3}x}$
	At stationary point, $\frac{dy}{dx} = 0$ $-e^{\sqrt{3}x} \sin x + \sqrt{3}e^{\sqrt{3}x} \cos x = 0$ $e^{\sqrt{3}x} (-\sin x + \sqrt{3}\cos x) = 0$ $e^{\sqrt{3}x} = 0$ or $-\sin x + \sqrt{3}\cos x = 0$ (rejected) $\tan x = \sqrt{3}$ $x = \frac{\pi}{3}$ $y = e^{\sqrt{3}(\frac{\pi}{3})} \cos\left(\frac{\pi}{3}\right)$ $= \frac{1}{2}e^{\frac{\pi}{\sqrt{3}}}$	M1 (equate <i>their</i> $\frac{dy}{dx}$ to 0) M1 (factorise) (minus 1 from Q10 if never reject $e^{\sqrt{3}x} = 0$) M1 (change to tan) A1 (correct <i>x</i>)
	$C\left(\frac{1}{3},\frac{1}{2}e^{i\theta}\right)$	A1 (correct y)
10 (h)	$e^{\sqrt{3}x}\cos x = 0$	M1 (equate <i>y</i> to 0 and
(0)	$e^{\sqrt{3}x} = 0$ or $\cos x = 0$	solve) (minus 1 from O10 if
	(rejected) $x = -\frac{\pi}{2}, \frac{\pi}{2}$	never reject $e^{\sqrt{3}x} = 0$)
	Coordinates of <i>A</i> and <i>B</i> are $\left(-\frac{\pi}{2}, 0\right)$ and $\left(\frac{\pi}{2}, 0\right)$.	A1, A1 (or only <i>x</i> -coordinates)
	$= \frac{1}{2} \left(\frac{\pi}{2} - \left(-\frac{\pi}{2} \right) \right) \frac{1}{2} e^{\frac{\pi}{\sqrt{3}}}$	M1 (using <i>their x</i> - coordinates of A and B and their y-coordinate of
	$= = \frac{1}{2} (\pi) \frac{1}{2} e^{\frac{\pi}{\sqrt{3}}}$	<i>C</i>)
	$=rac{\pi}{4}e^{rac{\pi}{\sqrt{3}}}$	M1 (all correct)