

ST. JOSEPH'S INSTITUTION PRELIMINARY EXAMINATION 2024 (YEAR 4)

CANDIDATE NAME	MARK SCHEME		
CLASS		INDEX NUMBER	
PHYSICS			6091/02
Paper 2			9 September 2024
Candidates answe No Additional Mat	er on the Question Paper. erials are required.		1 hour 45 minutes (08:05 – 09:50)

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Section A

Answer **all** questions. Write your answers in the spaces provided.

Section B

Answer **one** question. Write your answers in the spaces provided.

Candidates are reminded that **all** quantitative answers should include appropriate units. The use of an approved scientific calculator is expected, where appropriate.

Candidates are advised to show all their working in a clear and orderly manner, as more marks are awarded for sound use of Physics than for correct answers.

The number of marks is given in brackets [] at the end of each question or part question.

Section	Α
---------	---

1	2	3	4	5
/ 6	/ 8	/ 5	/ 8	/ 8
6	7	8	9	-
/ 5	/ 10	/ 10	/ 10	-

Section B

10	11
/ 10	/ 10

For exa	miner's use
Section A	70
Section B	10
Total	80

Section A

Answer **all** questions.

(c)	State and explain the change in the motion of the block if the gradient of the slo lowered until it is horizontal, while the tension in the wire remains unchanged.	ope is
	The block will speed up/accelerate.	
	The normal reaction force would be equal to the weight of the block when the surface is horizontal,	
	hence the tension is the <u>resultant force</u> which causes the block to accelerate.	

3	Fig. 3 the ha	3.1 shows a hand-operated hydraulic jack. A downward force of 10 N is appl andle, causing piston X to move downwards. This in turn causes an upward for n piston Y. A load placed on piston Y can then be raised.	ied on orce to
		piston Y piston X hand oil reservoir oil valve A valve B	le
		Fig. 3.1	
	(a)	Calculate the magnitude of the minimum force exerted on piston X given that the downward force on the handle is 10 N.	
		10N x 50cm = <i>F</i> x 5cm <i>F</i> = 100 N	
	(b)	In another instance, a force of 50 N exerted on piston X results in an upwar of 200 N on piston Y. Given that piston X has a diameter of of 1.5 cm, calcul diameter <i>d</i> of piston Y.	d force ate the
		$p_x = p_Y$ $50/(\pi 1.5^2) = 200/(\pi d^2)$ d = 3.0 cm	
	(c)	Explain, with reference to the design of the hydraulic jack, why the force e on piston Y is larger than that exerted on piston X.	xerted
		(Pascal law) <u>Pressure</u> due the force on piston X is <u>transmuniformly through the oil</u> to piston Y. The increased force is the pr of the pressure and the <u>larger cross-sectional area</u> of piston Y.	<u>nitted</u> oduct
	(d)	In one occasion, air bubbles are observed in the oil tank under piston Y.	
		Some work will be done to compress the air bubble, causing the work done on piston Y to decrease. This reduce efficiency of the system.	s the

	(ii)	Compare the depths of the water in regions A and B, supporting your answer with a reason.
	By ւ spee with	$\gamma = f\lambda$, for the <u>same frequency and shorter wavelength</u> , the wave ed is lower, therefore the depth has decreased in B (more friction bottom of tank).
	The	water in region B is <u>shallower</u> .

5	(a)	Object O of height 1.0 cm is placed 2.0 cm in front of a thin convex lens.
		Fig. 5.1 shows the upright object O and the principal axis. The light from object O forms a real and inverted image that is three times the size of the object.

Fig. 5.1

	(i)	On t	he grid provided in Fig. 5.1,	
		1.	draw two rays of light from the top of the object to the image, and	[1]
		2.	mark the image with the letter 'I' and the focal point with the letter 'F'.	[1]

and the light is travelling <u>from an optically de</u> an optically <u>less dense</u> medium, it will go thr internal reflection (TIR).	<u>ser</u> medium to ugh <u>total</u>
--	--

(b)	Sphere S ₂ is then earthed.
	State and explain the subsequent motion of the spheres S_1 and S_2 .
	When S_2 is earthed, the <u>charges in S_2 are neutralised</u> . As such <u>a repulsive</u> electric will not be present.
	At the same time, <u>negative charges will be induced on S_2 on its surfaced</u> <u>closer to S_1</u> , causing an attractive electric force on each sphere. Both spheres will <u>start to move towards each other</u> .
	When the spheres touch each other, the <u>charges in S_1 are redistributed</u> <u>between the spheres</u> causing them to repel each other.

7	Fig. 7.1 shows two magnets, supported on a yoke, placed on an electronic balance. The magnets produce a uniform horizontal magnetic field in the region between them. A copper wire DE connected in the circuit is clamped horizontally at right angles to the magnetic field.					
	e copper wire yoke switch 0.000 g A					
		Fig. 7.1				
	(a)	Explain why, when the switch is closed, a force is exerted on the wire DE.				
		Magnetic field of current in wire interacts with external magnetic field				
		Resultant magnetic field causes a force to act on the wire.				
	(b)	Fig. 7.2 shows the top view of part of the set-up in Fig. 7.1 with sides X and Y of the magnets facing each other.				
		$\begin{bmatrix} x \\ y \\ y \\ z \\ z$				
		When the switch is closed, the reading on the electronic balance				
		increases.				
		State and explain the polarities of the sides X and Y respectively.				
		X: South Y: North				

In order for the readings on the balance to increase, there must be a downward force acting on the magnet (connected to the yoke) by the wire. As such, there must be a force of equal magnitude acting upwards on the wire by the magnet when the switch is closed.

Thus, the magnetic field must be directed from Y to X (i.e. X is South pole, while Y is North pole).

Fig. 7.3 (top view)

	State and explain what subsequently happens to the compass needle if the compass needle is no longer held stationary in the position shown.					
	Rotates 180 degrees until it is aligned with the uniform magnetic field.					
	Unlike poles attract so N pole of compass needle is attracted to S pole of uniform magnetic field (repelled by N pole of uniform magnetic field)					
(d)	The battery is removed and the ammeter is connected to the switch. The switch is then closed.					
	When the wire DE is moved vertically downwards between the magnets, the ammeter shows a momentary reading.					
	(i) Explain why the ammeter shows a momentary reading.					
	Magnetic field lines linking the wire DE changes when the wire moves in the magnetic field / DE experiences a change of flux linkage when it moves in the magnetic field.					
	causing an induced emf and hence an induced current to flow in the wire.					

	(ii)	Describe and explain the change, if any, to the reading on the electronic balance as the wire DE is moved.
	Rea	iding increases.
-	The the	induced current causes a force to act on the wire which opposes direction in which the wire was moved.
(Hen elec	ce there is still an equal and opposite downward force on the tronic balance.

The el statior	ectrical po n, which in	wer supply in Newt cludes a boiler, a t	town is generated urbine, a cooling s	using a steam tur ystem, and an a.	bine-driven power c. generator.
Fig. 8.	1 describe	es the energy trans	fers between diffe	rent sections in t	he power station.
boiler		energy	turbine	useful work →	a.c. generator
(nign	temperature	9)			
			v energy		
			cooling system		
			Fig. 8.1		
Steam rotatin coolin boiler	n produced g the elec g system i to be reus	d in the boiler is us trical coils in the a.c using cold running ed.	ed to turn the turk c. generator. The s water. The conde	oine rotors to pro team is subsequ nsed steam is th	educe useful work, ently cooled in the en returned to the
Furthe	er data for	the power station a	are given in Table	8.1.	
			Table 8.1		
	Electrical power output by the a.c. generator 200 MW				
	Efficiency of electrical a.c. generator 100 %				
	Effi	ciency of turbine	<u> </u>	31 %	
	Spe	ecific heat capacity	of water	4200 J/(kg	<u>°C)</u>
	Spe	ecilic latent heat of	vaporisation	2.3×10° J/l	kg
(a)	(i) Sta	ate what is meant b	y efficiency.		
	lt en	is the ratio of t ergy/power inpu	he energy/pow t.	er output of a	a system to its

	(iii)	In the cooling system, steam enters at an initial temperature of 100 °C, before it condenses and cools to a temperature of 57 °C. The water produced is then returned to the boiler. Determine the maximum rate at which water at 57 °C is produced in the cooling system.
		rate of energy transfer = $\frac{mc\Delta\theta}{\Delta t} + \frac{ml_v}{\Delta t}$ = $\left(\frac{m}{\Delta t}\right)(c\Delta\theta + l_v)$ $\frac{m}{\Delta t} = \frac{\text{rate of energy transfer}}{c\Delta\theta + l_v}$ = $\frac{450 \times 10^6}{[4.2(100 - 57) + 2300] \times 10^3}$ = 180 kg/s
	(iv)	Explain why the answer in (a)(iii) is higher than the actual rate of water production in the cooling system.
		The value obtained in (a)(iii) is higher than the actual value, as not all the energy loss in the turbine will be transferred to the cooling system.
	(v)	With reference to the a.c. generator, describe one change which can be implemented to increase the voltage output of the a.c. generator.
		 Increase the size of the coil Increase magnetic fleld strength / magnetic flux density that the coil is immersed in. Increase the rate of rotation of the coils in the a.c. generator.

(ii)	Explain how the transformer in Fig. 8.2 minimises energy loss in the transmission of electrical power.
	The purpose of the transformer is to step up the voltage before the power is transmitted through the electrical cables. This is to ensure that the <u>current in the power cables remain low</u> , so that the loss/dissipation of energy can be kept to a minimum.

9	(a)	The p	The process of nuclear fusion can involve particles like the isotopes of hydrogen.				
		This p	This process generally occurs in two steps:				
		1. 2.	 Isotopes of hydrogen ²₁H and ³₁H combine to form the nuclide ⁵₂He. ⁵₂He rapidly decays to another isotope of helium, ⁴₂He. 1.8×10⁻¹⁴ J of energy is released in this process, some of which are in the form of gamma rays. 				
		(i)	Write	an equation representing the decay process in step 2.			
				${}_{2}^{5}\text{He} \rightarrow {}_{2}^{4}\text{He} + {}_{0}^{1}\text{n} + \gamma$			
		(ii)	The d	lecay of ${}_{2}^{5}$ He is a random and spontaneous process.			
			1.	Explain what is meant by a <i>random</i> decay.			
				time between emissions is unpredictable			
				or			
				emission can occur at any time / in any direction			
			2.	Explain what is meant by a <i>spontaneous</i> decay.			
				emission cannot be controlled / affected by outside influences			
				e.g. unaffected by temperature / pressure or emission happens on its own.			

		20	
	3.	A source of ${}_{2}^{5}$ He emits 1.2×10 ²¹ neutrons per second.	
		Calculate the amount of energy released from the sour 1 minute.	ce in
		rate of decay, n_d = rate of neutron emitted, n_n total number of decay in 1 minute = 60 n_n = $60 \times 1.2 \times 10^{21}$ = 7.2×10^{22}	
		total amount of energy released = $(7.2 \times 10^{22}) \times (1.8 \times 10^{-14})$	
		$= 1.3 \times 10^9 $ J	

This shows that there is a high possibility that there is no alpha particles present.
With the magnetic field turned on, there is still <u>a substantive</u> <u>amount of radiation</u> . This shows that the radiation present also <u>contains radiation that does not have a charge</u> . Thus it has to <u>be γ-rays</u> .

28

Section B

Answer **one** question from this section.

10	A fully charged car battery has an electromotive force of 12 V and an in-built resistance of 2.6 Ω . This battery can deliver a constant current of 2.1 A for a period of 5.0 hours.					
	(a)	Explain what is meant by a power source with an <i>electromotive force of 12 V</i> .				
		It means that 12 J of work is done by the power source in order to drive 1 C of charge through the whole circuit.				
	(b)	The charge of an electron is -1.6×10^{-19} C.				
		Calculate the total number of electrons passing through the battery over a duration of 5.0 hours.				
		$I = \frac{\Delta Q}{\Delta t}$ $= \frac{\Delta N q_e}{\Delta t}$ $N = \frac{I \Delta t}{\Delta q_e}$ $= \frac{2.1(5 \times 60^2)}{1.6 \times 10^{-19}}$ $= 2.4 \times 10^{23}$				

	(iii)	The resistance of each sidelight is 24 Ω .		
		Switches S_2 and S_3 are closed and switch S_1 is open.		
		Calculate		
		1. the effective resistance in the circuit, and		
		$R_{light} = \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{24} + \frac{1}{24} + \frac{1}{24} + \frac{1}{24}\right)^{-1}$		
		$= 1.2 \Omega$		
		$R_{eff} = R_{light} + 2.6$		
		$= 3.8 \Omega$		
		2. the current in the battery.		
		$Emf = IR_{eff}$		
		$I = \frac{Emf}{1 - \frac{12V}{1 - 12V$		
		$I = \frac{1}{R_{eff}} = \frac{1}{3.8\Omega}$		
		= 3.2 A		
(d)	The	idelights and headlights are switched on. S_1 is then closed.		
	Expl	in why all the lights become less bright when S_1 is closed.		
		When the starter motor is switched on (S1 closed), the <u>effective</u>		
		resistance of the parallel group of lights and the starter motor		
		will <u>decrease</u> ,		
		Circa the 2.00 register is in equips with the nerellel mean the		
		Since the 2.60 resistor is in series with the parallel group, the		
		principle) while p.d. across 2.60 increases		
		p(n) op(e), w(n) e p(u) a of 055 2.022 more ases.		
		V^2/R for the lights will decrease, and hence they will be dimmer.		

Fig. item	11.1 shows the oven chamber of an old firewood pizza oven. Pizzas and other s are cooked on the oven floor.					
chimney oven dome						
	Fig. 11.1					
The	environment within the oven chamber can reach very high temperatures.					
To h ignit	nasten the temperature rise, a chef closes the door to the oven chamber after ing the firewood.					
Afte	r multiple uses, the chimney gets clogged.					
(a)	Using ideas about molecules, explain why the pressure within the oven chamber increases after the door to the chamber is closed.					
	As the firewood burns, <u>energy is transferred to the internal store of</u> <u>the air molecules</u> within the oven chamber by heating.					
	This causes the <u>frequency and force of collisions between the air</u> molecules and the surface of the pot to increase.					
	This results in an increase in force per unit area or pressure.					
(b)	The oven floor and dome are made of poor conductors like firebricks to retain heat better.					
	Explain what this suggests about the behaviour of the electrons in the firebricks.					
	There are no free/mobile electrons available to transfer energy within the firebricks.					
	Fig. item The To h ignit Afte (a)					

	(i)	Calculate the vertical height difference h_1 .
		Give your answer in cm.
		The pressure difference in both arms is only dependant on the vertical height difference.
		$p_{gas} = h_1 \rho g + \rho_{atm}$ $h_1 = \frac{\rho_{gas} - \rho_{atm}}{\rho g}$ $= \frac{(105 - 100) \times 10^3}{13.6 \times 10^3 \times 10}$
		=0.0368 m
		=37 mm =3.7 cm
	(ii)	The U-tube is replaced with another U-tube that is tilted at an angle, as shown in Fig. 11.3.
		This U-tube has the same dimensions as the previous U-tube (Fig. 11.2).
		to oven dome
		Fig. 11.3
		The gas pressure in the oven chamber and atmospheric pressure remain unchanged.
		State and explain the change, if any, to vertical height difference h_1 in the tilted U-tube.
		Since h_1 is dependent on only the vertical height difference, and that mercury is used, the value of h_1 is will not change.

	(iii)	To detect smaller pressure changes in the oven dome, the U-tube should be filled with a liquid of lower density than mercury. Suggest why this is so.
		For the same pressure difference, the height difference in the liquid levels is inversely proportional to the density of the liquid.
		Thus, with the lower density, <u>small pressure differences will</u> <u>be represented by larger height differences</u> .
(d)	A pizza	a is put next to the fire on the oven floor to be cooked.
L	(i)	Using ideas about molecules, describe how energy is transferred within the pizza by conduction.
		The molecules in the pizza at the hotter end <u>gain energy and</u> <u>vibrate faster</u> .
		They <u>collide with neighbouring molecules</u> , transferring energy, causing the neighbouring molecules to vibrate faster.
	(ii)	Describe one other process through which energy is transferred to the pizza.
		Energy is transferred to the pizza via radiation of <u>infrared rays</u> from the fire flame/inner surfaces of the oven chamber to the food.
		(Thermal energy from convection current is not transferred sideways)

END OF PAPER

35 BLANK PAGE