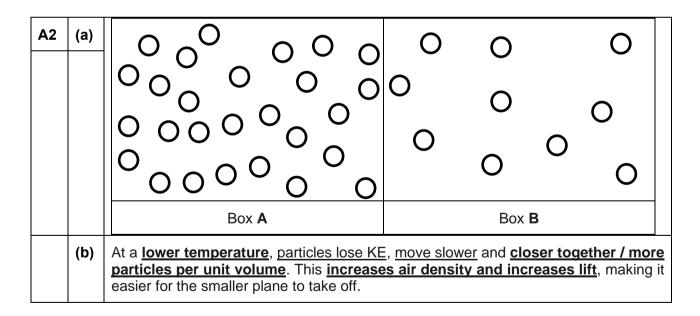
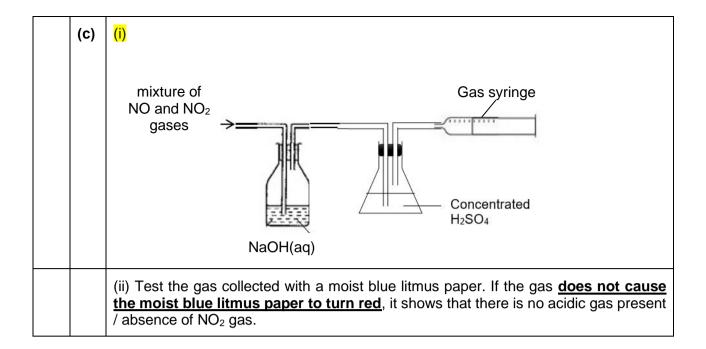
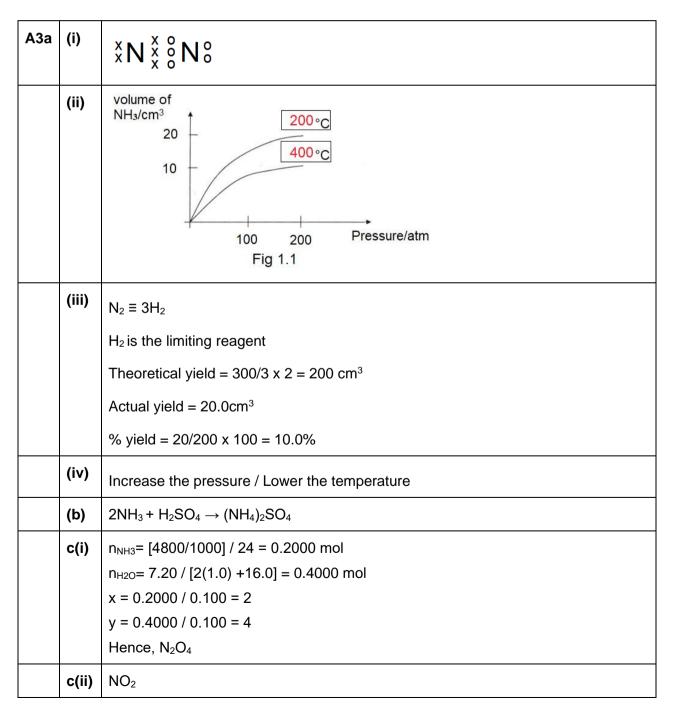
RIVER VALLEY HIGH SCHOOL 2023 SEC 3 END-OF-YEAR EXAMINATION CHEMISTRY


Paper 1


1	2	3	4	5	6	7	8	9	10
C	B	D	A	C	B	D	D	D	B
11	12	13	14	15	16	17	18	19	20
D	D	D	<mark>C</mark>	B	B	B	A	<mark>C</mark>	D
21	22	23	24	25	26	27	28	29	30
D	B	D	A	A	B	B	B	A	A


Paper 2

Section A

A1	(a)	A and E
	(b)	D and E
	(c)	B and F
	(d)	D

A4a	(i)	Aqueous iodine is brown				
	(ii)	Na ₂ SO ₄ or sodium sulfate [
	(iii)	element	oxidation state in product			
		copper	+2	<mark>+1</mark>		
		iodine	<mark>-1</mark>	0		
	(iv)	Copper.				
		Cu ²⁺ /Cu/ Copper/CuSO ₄ gained electrons				
b	(i)	Manganese / Mn / MnO ₄ ⁻ is <u>reduced</u> as the <u>oxidation state of Mn decreased from</u> +7 in MnO ₄ ⁻ to +6 in MnO ₄ ²⁻				
	(ii)	$MnO_4^{2-} + \frac{2}{2} H_2O + \frac{2}{2} e^- \rightarrow MnO_2 + 4OH^-$				
	(iii)	MnO ₂ is an <u>insoluble</u> solid				
	(iv)	Substance X is a reducing agent				

A5	(a)	2 nd series coin – <u>aluminium & bronze</u> . <u>Al has a relatively low / lowest density</u> of 2700 kg/m ³ compared to other metals
	(b)	Both 1 st and 2 nd series of coins are made of alloys. In an alloy, the <u>different size of</u> <u>atoms disrupts the orderly arrangement</u> of atoms in pure metals. Hence, the <u>layer</u> <u>of atoms cannot slide easily</u> in an alloy (brass vs copper). Hence coins made from mixture of metals are <u>stronger / harder</u> .
	(c)	<u>Copper</u> has a <u>higher melting point (1083°C)</u> than <u>brass (950°C)</u> OR <u>iron (1536°C)</u> has a <u>higher melting point</u> than <u>steel (1510°C)</u> .
	d(i)	A lot of energy is required to overcome the <u>strong electrostatic attraction between</u> <u>metal cations and (sea of) delocalised / mobile valence electrons</u> . Hence it does not have the ability to expand upon heating.
	(ii)	Diamond has a <u>giant covalent structure</u> while poly(tetrafluoroethene) has a <u>macromolecular structure</u> . <u>More energy</u> is required to overcome the stronger <u>covalent bonds between the</u> <u>carbon atoms</u> than the weaker <u>intermolecular forces of attraction between the</u> <u>poly(tetrafluoroethene) molecules</u> . Hence, diamond has a lower CTE than poly(tetrafluoroethene).
	(iii)	 Hard Non-conductor of electricity Insoluble in all solvents / water High melting & boiling points

Section B

B 6	(a)		A weak acid is a substance that partially ionises / dissociates in water to produce <u>/ form H+</u> ions.			
	(b)	H ₂ C	$H_2CO_3 (aq) \rightleftharpoons H^+ (aq) + HCO_3^- (aq)$			
	(c)	orga Car	Ocean acidification would also <u>dissolve / react</u> with the shells of calcifying organisms. Carbonic <u>acid</u> can <u>react with calcium carbonate to form calcium bicarbonate</u> (soluble in water), water and carbon dioxide.			
	(d)	(i)	Sodium chloride / NaC <i>l</i> <u>and</u> sodium carbonate / Na ₂ CO ₃ These <u>salts are soluble</u> in water. The <u>reagents</u> that are used to make these salts are also <u>soluble</u> in water.			
		(ii)	Repeat the titration without using the indicator . Evaporate the resulting mixture / aliquot to dryness.			

B7	(a)	Solu	Solution P			
	(b)	RNH	$RNH_2(g) + H_2O(aq) \rightleftharpoons RNH_3^+(aq) + OH^-(aq)$			
	(c)	(i)	Solution P is <u>neutral</u> as the universal indicator is green in colour. Solution P has the <u>same number / concentration of H⁺ ions and OH⁻ ions</u> .			
	(d)	(i)	(i) The solubility of Group 2 sulfates decreases down the group.			
		(ii)	9.44 x 10 ⁻⁶ Accept: any value in the range of 10 ⁻⁶ .			
		(ii)	Add an <u>excess</u> of magnesium oxide/ magnesium hydroxide/ magnesium/ magnesium carbonate to dilute sulfuric acid until no more solid dissolves / no more effervescence observed.			
			Filter to collect the filtrate. Evaporate the filtrate to dryness.			