Answers to Sec 4 Pure Chem Preliminary Exam P2 2024

1(a)	The solid dissolves/disappears/becomes smaller.				[1]		
(b)	Carbonic acid					[1]	
(c)	Barium eth	anoate or	(CH ₃ COO) ₂ E	За			[1]
(d)	Ba + 2H ₂ C) → Ba(Ol	H) ₂ + H ₂				[1]
(e)(i)				has a <u>lower th</u>	nermal stabil	<u>ity</u> as	[1]
			ve than bariu	<u>ım.</u>			[1]
(ii)	BaCO ₃ → l	BaO + C	O ₂				[1]
2(a)				P to Cl. As you			
				<u>harge increase</u>			[1]
	-	-	·	are more clos		<u>to</u>	[1]
		- `	n between p	rotons and ele	ectrons		
	increases).						
(1.)(')				I			
(b)(i)	Ion	chlorate	perchlorate	hypochlorite	chloride		2m- all correct
	formula	C/O ₃ -	C/O ₄ -	C/O-	C <i>l</i> -		Correct
	oxidation						1m-2 or 3
	state of	+5	+7	+1	-1		correct
	chlorine						
(ii)	Oxidation s	state of ch	lorine increas	ses from +5 in	KCIO ₃ to +7	' in	
` ′	KCIO ₄ . Chlo	orine is ox	idised. (acce	pt if KClO₃ oxi	idised)		[1]
				ises from +5 ir	=	1 in	
	KCI, Chlori	ne is redu	ced. (accept	if KClO ₃ reduc	ced)		[1]
	Since chlorine is both oxidised and reduced, it is a					ניין	
	disproporti	onation re	action.				
(c)							
	t	est		observation			[1]
	addition of a few Solution remains reddish brown			ניו			
			Solution	remains redui	SIT DIOWII		
	drops of Br ₂ (aq)			[1]			
	addition of a few White precipitate						
	drops of AgNO₃(aq)						
							1

3(a)	Covalent bonding, simple covalent (molecular) structure	[1]-both answers
(b)	CL PCL X	[1-bonding electrons between O & P, O electrons] [1-bonding electrons between Cl & P, electrons of Cl]
(c)	Enthalpy change for bond breaking in reactants = 2(289) + 496 = +1074 kJ Enthalpy change for bond formation in products	[1]
	= - (2 x 592) = -1184 kJ Enthalpy change for reaction = + 1074 – 11 84 = -110 kJ	[1]
(d)	energy $ \begin{array}{c} 2PCl_3(g) + O_2(g) \\ & Ea = +1074kJ \end{array} $ $ \Delta H = -110kJ $ Progress of reaction	[1- exo + labelling of reactants & products [1-Ea labelling & value] [1-∆H & value]
4(a)	Similarity: At the anode, iodine is produced. Difference: At the cathode, for molten magnesium iodide, magnesium is produced while hydrogen is produced for concentrated aqueous magnesium iodide.	[1]
(b)	Colourless solution <u>turns brown</u> . <u>Chlorine which is more reactive than iodine displaces iodine from magnesium iodide</u> , producing the brown iodine.	[1]
(c)	The oxidation state of iodine increases from -1 in I ⁻ to 0 in I ₂ .	[1]
	I ⁻ is oxidised, hence it is acting as the reducing agent.	[1]

(d)(i)	lodine -123 and iodine-131 have the same number of 7 valence	
	electrons, hence will have similar chemical properties.	[1]
(ii)	$^{32}_{15}P \rightarrow ^{32}_{16}S + ^{0}_{-1}\beta$	[1]
5(a)	No of moles of $S_2O_3^{2-} = 0.0200 \times 20.10/1000 = 0.000402 \text{ mol}$	
()	Mole ratio I_2 : $S_2O_3^{2-} = 1$: $2 = 0.000402/2 : 0.000402$ mol	
	No of moles of $I_2 = 0.000402/2 = 0.000201$ mol	[1]
(b)	Mole ratio I ₂ : Cu ²⁺ = 1: 2 = 0.000201: 0.000201 x 2	
	No of moles of $Cu^{2+} = 0.000402$ mol	[1]
	No of moles of Cu^{2+} in original piece of ore = $100/25 \times 0.000402$	[1]
	= 0.001608 mol	
(c)	Mass of copper in ore = 0.001608 x 64 = 0.1029 g	[1]
	% of copper in ore = 0.1029/0.567 x 100% =18.15% = 18.2 %	[1]
	(3sf)	
(d)	Alloy of copper is harder than pure copper as the atoms in the	
	alloy have <u>different sizes</u> , which <u>disrupts the orderly layered</u>	[1]
	arrangement of copper atoms, making it harder for the layers of	[1]
	atoms to slide past one another.	
6(a)	$Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$	[1]
(b)	Mr of $SO_4^{2-} = 32 + 4(16) = 96$	[1-
	Ar of Ba ²⁺ = 137	calculation
	SO ₄ ²⁻ has a <u>smaller Mr</u> , hence will <u>diffuse faster</u> , so they will	of Ar & Mr]
	meet and react nearer to barium nitrate at \underline{X} .	[1m for explanation
(c)	Observation: white ppt and blue ppt	[1]
(d)(i)	Volume of $CO_2 = 42 \text{ cm}^3$	
	No of moles of $CO_2 = 42/24000 = 0.00175$ mol	[1]
	Mole ratio CO ₂ : H ₂ SO ₄ = 1:1	F41
	No of moles of H ₂ SO ₄ = 0.00175 mol	[1]
(ii)	No of moles of H ₂ SO ₄ = 0.00175 = 0.0500 x V	
	Volume of $H_2SO_4 = 0.00175/0.0500 = 0.035 \text{ dm}^3 = 35 \text{ cm}^3$	[1]
(iii)	No of moles of $H_2SO_4 = 0.0643 \times 0.035 = 0.002251 \text{ mol}$	
	Mole ratio CO_2 : $H_2SO_4 = 1:1$	F43
	No of moles of $CO_2 = 0.002251$ mol	[1]
	Volume of $CO_2 = 0.002251 \times 24 = 0.054 \text{ dm}^3 = 54 \text{ cm}^3$	[1]
(iv)	At higher concentrations, there are more particles per unit	[1]
	<u>volume</u> .	[1]
	Frequency of effective collisions increases, rate of reaction	
	increases.	

(v)	volume of hydrogen 30- /cm³ 30- /20	[1- vol of gas = 54 cm ³ & steeper curve]
7(a)	Plastics are made from <u>non-renewable petroleum,</u> hence it is not	[1]
	environmentally sustainable. As greehouse gases are produced in the plastic production process, it is harmful to the environment as green house gases cause global warming, causing polar ice caps to melt, resulting in flooding.	[1]
(b)	Physical method: The plastic is melted, cooled and made into	[1]
	pellets. Chemical method: The plastic is cracked or depolymerised.	[1]
(c)(i)	Monomers of PET: HO—C—OH and HO—CH ₂ —CH ₂ —OH	[1]
	Monomer of PVC H CI C=C H H	[1]
(ii)	Addition polymer: PVC	[4]
/:::\	Condensation polymer: PET	[1]
(iii)	Any one:	

	In condensa molecules to small molec	[1]			
		ation polymeris	polymerisation are ation, the monome	e unsaturated while ers have different	
8(a)	Isomerism				[1]
(b)	Alcohol	P	Q	R	Every 2
	Structura I formula	correct 1m [2]			
	Class of alcohol	Secondary(2°	Primary (1º)	Tertiary (3°)	
)			
	Name		2-methylpropan-	2-methylbutan-2-ol	
		Pentan-2-ol	1-ol		
(c)	Accept any	value between	75 to 130		[1]
			droxyl groups, ther	e will be	[1]
	1	ger hydrogen b	=	iahar hailina naint	ן ניין
	than ethano	igher boiling point	[1]		
(d)(i)	V represent	Every 2			
	•	nts C-H bond			correct 1m
	X represent	[2]			
(ii)	Y represents C=O Z is a carboxylic acid				[1]
(iii)	Z is ethanoic acid.				
	H P				[2]
	H—C—C H				
(iv)	Ethanol and acidified potassium manganate (VII) or oxygen				[1]
9(a)(i		•	magnesium. Magn		[1-
,	metallic lattice structure. There are strong electrostatic forces of				description of ionic

(ii)	attraction between positive metal ions and the sea of delocalized electrons which require a lot of energy to overcome, hence high mpt. lodine is a covalent molecule with simple covalent/molecular structure. There are weak intermolecular forces of attraction between the molecules which require little energy to overcome, hence low mpt. Each carbon atom in graphite has one valence electron not used				bonding & structure] [1- description of bonding & structure] [1- energy]
	layers of atoms electricity.	ence there are <u>n</u> which act as <u>mo</u> molecules, <u>abse</u>	bile charge carri	ers to conduct	
		electrons, hence		<u></u>	[1]
(b)		Р	0	CI	
	No of moles	20.2/31 = 0.652	10.4/16 =0.65	69.4/35.5 =1.95	[1] [1]
	Mole ratio	0.652/0.65 =	0.65/0.65 = 1	1.95/0.65 = 3	1.1
	Empirical formu				
(c)(i)	Potential differe	nce = +1.36 - 0.7	77 = 0.59V		[1]
(ii)	Green solution t	urns reddish bro	wn		[1]
(iii)	Test using moist blue litmus paper. If the litmus paper is not bleached, the chlorine is fully used up.				[1]
10 (a)	Mr of C ₆ H ₁₂ N ₄ =	140			
	Mr of C ₁₀ H ₈ = 12	8			F41
	Energy density of hexamine = $1/140 \times (-4200) = -30 \text{kJ/g}$ Energy density of naphthalene = $1/128 \times (-5133) = 40.1 \text{ kJ/g}$				[1]
(b)	Naphthalene has a <u>higher energy density</u> and it has a lower mass, so it is better to bring moth balls than solid fuel for camping as it gives more energy per gram of fuel.				[1]
(c)	Air pollutant: nitrogen dioxide				[1]
	Effect of air pollutant: Nitrogen dioxide dissolves in rain water to				
	form <u>acid rain</u> which <u>corrodes limestone and metal</u>				[1]
	structures/harm				
(d)(i)	Student A: The solid dissolves				[1-both
	Student B: The	solid dissolves o	r white precipitat	е	correct] [1]

	Explanation: Aluminium is an amphoteric oxide, so it reacts with	
	both hydrochloric acid and potassium hydroxide.	
(ii)	Aluminium oxide has a giant ionic crystal lattice structure which	[1-
	has strong electrostatic forces of attraction between oppositely	descirption
	charged ions, requiring a lot of energy to overcome, hence has	of ionic
	high mpt and so exists as a solid.	bonding &
	Nitrogen dioxide has a <u>simple molecular structure</u> and has <u>weak</u>	structure]
	intermolecular forces of attraction between the molecules which	description
	require little energy to come, hence low mpt and exist as a gas.	of bonding
		& structure]
		[1- energy]