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Mathematical Formulae 

   

1. ALGEBRA 
    

Quadratic Equation 
   

  For the equation ax2 + bx + c = 0, 
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Binomial Expansion 
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where n is a positive integer and 
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2. TRIGONOMETRY 
 

Identities 
 

sin2 A + cos2 A = 1 
 

sec2 A = 1 + tan2 A 
 

cosec2 A = 1 + cot2 A 
 

sin(A  B) = sin A cos B cos A sin B 
 

cos(A  B) = cos A cos B sin A sin B 
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sin 2A = 2 sin A cos A 
 

cos 2A = cos2 A  sin2 A = 2cos2 A  1 = 1  2sin2 A 
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Formulae for ABC 
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a2  =  b2 + c2 – 2bc cos A 
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[Turn over 

1 The diagram shows part of the graph of rqxpy  )(sin . 

 

              

                                             
 

 

 

 (i) Find the value of each of the constants p, q and r. [3] 

         

 (ii) Given that (k, 2) and (h, 2) lie on the curve as shown, find an equation connecting 

k, h and . [1] 

    

    

    

2 50 milligrams of a volatile substance is placed in a laboratory.   

Its mass, M milligrams, t minutes later, is given by 
t

ekM 2

1

120  , where k is a constant.  
 

    

 (i) Explain why k = 70. [1] 

    

 (ii) Determine the value of t the moment the substance has completely evaporated.  [2] 

    

 (iii) Sketch the graph of M against t. [2] 
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3  

 

 

 

 

 

 

 

 

 

 

 

 

 

The diagram shows the graph of 123 23  xxxy . 

 

   

 (i) Explain why  123 23  xxx   cannot be written as a product of 3 linear factors. [1] 

         

 (ii) Show that  x – 4  is a factor of 123 23  xxx . [1] 

         

 (iii) Factorise 123 23  xxx  completely and hence solve the equation  

  )4(5123 23  xxxx . [3] 

         

         

         

4 The area of a triangle ABC, right-angled at B, is  1927   cm2.   

 AB has a length of  31  cm.  

   

 (i) Find the exact length of BC in the form  ba   cm, where a and b are integers. [4] 

    

 (ii) Find an expression for (AC)2 in the form  3dc   cm2, where c and d are integers.  [2] 

   

   

   

5 The roots of the quadratic equation 042  pxx  are 
2  and 2 , where 0 , 0   

 and   .  

    

 (a) Find an expression, in terms of p, for   . [3] 

   

 (b) In the case where p =  – 5, find a quadratic equation with roots 1  and 1 . [5] 

   

   

   

   

   

123 23  xxxy  
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6 (a) Given that lg 2 = m, express in terms of m,  

         

  (i) 32log5 ,     [3] 

         

  (ii) 102 .     [2] 

        

 (b) Express )4(log2loglog2 333  xx  as a quadratic equation in x and explain why   

  the quadratic equation has no real solutions. [4] 

    

    

    

7 A curve has the equation 5)4(3 3  xy .    

   

 (i)   Find the coordinates of the stationary point of the curve.  [3] 

    

 (ii)   Determine the nature of the stationary point.  [3] 

    

 (iii) Hence sketch the graph of 5)4(3 3  xy , showing all the intercepts. [3] 
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The diagram shows two triangles DAB and DBC.  

It is given that BD = 5 m and BC = 2 m.  

Angle DAB = angle DBC = angle DEC = 90.  Angle ADB =   and   can vary.  

 

    

 
(i) Show that DE can be expressed in the form (  sincos ba  ) metres, where a and b are 

constants to be found. [2] 

     

 (ii) Express DE in the form )(cos  R  metres, where R > 0 and  is an acute angle. [2] 

    

 (iii) Express CE in the form )(sin  R  metres. [2] 

    

 (iv) Hence show that the area of triangle CDE can be expressed in the form   

  )22(sin  p  m2, where p is a constant to be found. [3] 
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 The diagram shows two circles, C1 and C2, intersecting at A and at B. 

F is a point on AB produced such that FD and FE are tangents to C1 at D and C2 at E 

respectively. 

DBE is a straight line. 

 

    

 (i) Prove that triangles FDB and FAD are similar.  [2] 

    

 (ii) Name another pair of similar triangles and hence show that FD = FE. [4] 

   

 (iii) If the line ABF is perpendicular to DE, explain why a circle with AF as a diameter   

  passes through D and E. [4] 

   

   

   

10 A circle C1, whose centre lies on the line 2x + y = 0, passes through the points P(3, – 1) and   

 Q(– 4, – 2).  

   

 (i) Find the equation of the perpendicular bisector of PQ. [3] 

         

 (ii) Hence find the equation of C1. [4] 

         

 (iii) Show that the point R(2, 5) lies inside C1.  [2] 

         

 (iv) Find the equation of another circle C2, which is a reflection of C1 in the y-axis. [2] 
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11 A scooter travelling up and down a straight horizontal road passes a fixed point O with a speed 

of p ms – 1. The velocity, v ms – 1, of the scooter, t seconds after passing O, is given by 

tv
3

1
sin87  . 

 

    

 (i) State the value of p. [1] 

    

 (ii)   Find the values of t for the first two instances when the scooter changes its direction of   

  motion. [4] 

    

 (iii)   Find the distance travelled by the scooter in the third second. [7] 

         

         

         
  

12 
 

(a) Find  xx
x

ln3
d

d 2
. [2] 

    

 (b) Hence find xxx dln . [3] 

    

 

(c)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The diagram shows the line x = 2 and part of the curve xxy ln . 

The curve meets the x-axis at the point A and the line 
2

1
x  at the point B.  

 

         

  (i) Find the x-coordinate of A.      [2] 

         

  (ii) Find the total area of the shaded region. [5] 
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