2019 TJC JC2 H2 Chemistry Prelim MCQ Worked Solutions

1	2	3	4	5	6	7	8	9	10
С	С	D	В	Α	С	С	В	В	Α
11	12	13	14	15	16	17	18	19	20
С	D	Α	D	D	A	Α	В	D	C
21	22	23	24	25	26	27	28	29	30
В	D	В	Α	С	В	D	В	Α	C

Question 1 Answer: C

Particle	Neutron	Nucleon	Proton	Electron	
U	16	33	17	17	
V	18	35	17	18	
S ²⁻	16	32	16	18	
T ²⁺	17	34	17	15	
Q ³⁻	16	31	15	18	

Question 2 Answer: C

 $\begin{array}{cccc} CH_4 &+& 2O_2 &\longrightarrow CO_2 &+& 2H_2O \\ x & & 0.95x \\ CH_4 &+& 3/2 & O_2 &\longrightarrow CO &+& 2H_2O \\ & & 0.05x \end{array}$

If combustion is complete, x dm³ CH₄ will require 2x dm³ O₂. Combustion of 1 mol CH₄ to form CO, requires 3/2 mol O₂ ie $\frac{1}{2}$ mol O₂ less than complete combustion. To obtain 0.05x mol CO will need 0.05x/2 mol less O₂. Amt of O₂ needed for incomplete combustion = 2x - 0.05x/2

Or

Volume of methane burnt = $y dm^3$ 5% of methane is burnt to give CO and the remaining 95% is burnt to give CO₂ Vol of methane burnt to give CO = 0.05yVol of methane burnt to give $CO_2 = (1-0.05)y$ CH4 + $2O_2 \rightarrow CO_2 + 2H_2O$ Volume used (1-0.05)y 2(1-0.05)y $3/2O_2 \rightarrow CO + 2H_2O$ CH₄ + Volume used 0.05y 3/2(0.05y) Vol of O_2 used = 2(1-0.05)y + 3/2(0.05y) = 2y - 2(0.05)y + 3/2(0.05y) $= 2y - \frac{1}{2} (0.05y)$ Question 3 Answer: D Na : [Ne]3s¹ (1 unpaired electron) $P^{3^{-}}$: [Ar] (0 unpaired electron) V : $[Ar]3d^34s^2$ (3 unpaired electron) Mn²⁺: [Ar]3d⁵ (5 unpaired electron) Answer: B Question 4 \bullet 1 σ , 2π ΗН 1σ , 1π O=C-C=C-CEC-CEN O-H

Question 13 Answer: A

Total pressure increases at constant volume but *partial pressure* of individual product and reactant remains constant. So position of equilibrium will NOT shift at all.

Question 14 Answer: D

 $[\mathsf{H}^+] = \sqrt{K_a C}$

When the acid is diluted, the conc of acid drops, so $[H^+]$ will drop too \rightarrow pH increases, following a logarithm function since pH = -lg[H⁺].

However at infinitely dilute condition, $[H^+]_{overall} = [H^+]_{acid} + [H^+]_{water}$, where $[H^+]_{acid} << [H^+]_{water}$, so $[H^+]_{overall} \approx [H^+]_{water} = 10^{-7}$ mol dm⁻³ at 25 °C. So the pH at infinitely dilute condition will reach a constant value of 7.

Question 15 Answer: D

 $Zn_3[Fe(CN)_6]_2 \rightleftharpoons 3Zn^{2+} + 2[Fe(CN)_6]^{3-}$

At eqm, there are 3y mol of Zn^{2+} and 2y mol of $[Fe(CN)_6]^{3-}$.

$$K_{sp} = [Zn^{2+}]^3 [Fe(CN)_6^{3-}]^2$$

$$y = \sqrt[5]{\frac{w}{108}}$$

$$[Fe(CN)_{6^{3-}}] = 2 \times \sqrt[5]{\frac{W}{108}} = \sqrt[5]{\frac{8W}{27}}$$

Question 16 Answer: A

pK_a value of -COOH = 1.9, -SH = 8.1 and $-NH_3^+ = 10.3$. At isoelectric point, only $-COO^-$ and $-NH_3^+$ exist, so pl = $\frac{1}{2}$ (1.9+8.1) = 5.0

Hence only Bromocresol Green and Methyl Red can detect the isoelectric point of cysteine as the pl is within the working range of both indicators.

Question 17 Answer: A

X is Al:

- Al₂O₃ has no reaction with water due to high lattice energy.
- AlCl₃ undergoes hydrolysis with water to give an acidic solution of pH 3
- Al₂O₃, an amphoteric oxide, reacts with HCl to form AlCl₃ (chloride salt) and water.

Y is Na

- Na₂O reacts with water to forms NaOH (formation of hydroxide).
- NaCl undergoes only hydration with water to form a solution with pH = 7
- Na₂O, a basic oxide, reacts with HC*l* to form NaC*l* and H₂O.

Z is Si

- SiO2 does not react with water due to its giant covalent structure
- SiCl₄ reacts with water to give an acidic solution pH 1
- SiO₂ does not react with HCl.

Question 18 Answer: B

Thermal stability is increased by (a) lower polarising power of the cation and (b) lower polarisability of the anion.

 Ba^{2+} has a lower polarising power than Ca^{2+} due to its larger ionic radius. As $BaSO_4$ requires a higher temperature for decomposition, it is thermally more stable due to the lower polarising power of Ba^{2+} . It is not due to the polarisability of the SO_4^{2-} anion because the SO_4^{2-} anion is larger and more polarisable than CO_3^{2-} .

Statement 1 and 4 are incorrect as it does not help to explain thermal stability. Statement 2 is incorrect because SO_4^{2-} is more easily polarised than CO_3^{2-} ions.

Question 19 Answer: D

Option **A** is correct as there are 4 dative bonds formed in the complex to the central copper ion, hence coordination number is 4.

Option **B** is correct as these are ligand exchange reactions with no change in oxidation state. Copper (II) complexes are formed in this reaction scheme.

Option **C** is correct as **Q** is formed in presence of excess ammonia and the complex $[Cu(NH_3)_4(H_2O)_2]^{2+}$ is formed. Option **D** is incorrect as reduction reaction does not occur during a ligand exchange reaction (Reaction III).

A is incorrect as oxidation of methylbenzene to benzoic acid requires KMnO₄/H₂SO₄, heat.

C is incorrect as aqueous NaOH needs to be added to liberate the free phenylamine and concentrated HNO₃ will result in substitution at 2, 4 position.

D is incorrect as LiA/H₄ will reduce carboxylic acid back to primary alcohol.

Question 24 Answer: A
Option 1 is incorrect as stereoisomers have different biological properties. Option 2 is correct. Molecular formula = $C_{12}H_{18}Br_6$, Empirical formula = C_2H_3Br Option 3 is incorrect as the carbon atoms are tetrahedral.
Question 25 Answer: C
 A 1 mole of compound G reacts with Na (alcohol, phenol, carboxylic acid) to produce 1.5 mole of H₂. B Tertiary alcohol cannot be oxidised so no green solution obtained. C 1 mole of compound G reacts with 2 moles of NaOH (carboxylic acid and phenol) so product has a charge of 2 D 1 mole of compound G reacts with 3 moles of CH₃COC<i>I</i> (alcohol, phenol, amine) to produce 3 moles of HC<i>I</i>.
Question 26 Answer: B
1 CH ₂ =CHCO ₂ H gives CH ₂ =CHCH ₂ OH (gains 2 H and loses 1 O). Alkene is not reduced. → net change in $M_r = +2 - 16 = -14$
2 CH ₃ CH ₂ COCO ₂ H gives CH ₃ CH ₂ CH(OH)CH ₂ OH (gains 4H and lose 1 O) → net change in $M_r = +4 - 16 = -12$
3 CH ₃ CH ₂ CONH ₂ gives CH ₃ CH ₂ CH ₂ NH ₂ (gains 2H and lose 1 O) \rightarrow net change in M _r = +2 -16 = -14
Question 27 Answer: D
 A Product is CH₃CH₂CH₂CHCN(OD) B Product is CH₃CH₂CH₂CO₂D C Product is CH₃CH₂CH₂CO₂D and ⁺ND₂(CH₃)₂

D Product is $CH_3CH_2CH_2CO_2^-$ which does not contain deuterium.

Question 28 Answer: B

Increasing pK_b: arrange from most basic to least basic.

1 and 2 are both secondary amines. However, 1 has an electron-withdrawing group (C=O) attached to it which reduces the electron density on the nitrogen and hence it is less basic than 2.

3 is neutral.

4 is less basic than 1 and 2 since the lone pair of electrons on the nitrogen is delocalised into the benzene ring and hence less available for dative bonding with a proton.

Question 29 Answer: A

ala-met

met-gly-ala gly-ala-gly gly-ser ser-lys

Therefore, the structure of the polypeptide is ala-met-gly-ala-gly-ser-lys

Question 30 Answer: C

Working backwards via pattern recognition: "break C=C bond and place back O at C=C bond" to get first carbonyl compound and the remaining fragment belongs to the second carbonyl compound.

A & D: forms from 2 molecules of butanone

B: forms from 1 molecule of butanone and 2 molecules of ethanal

C: C=C on the right is NOT at C2 and C3 from C=O group