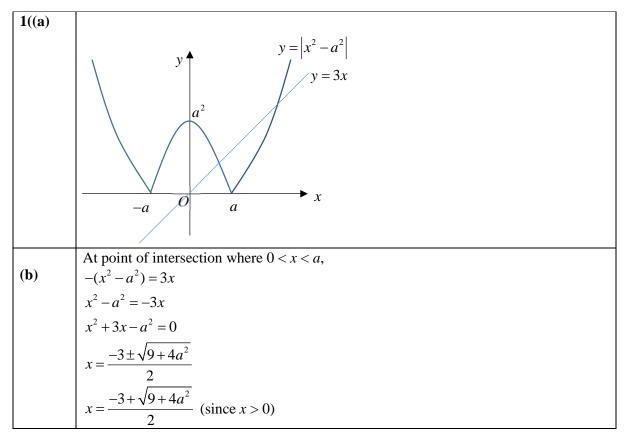
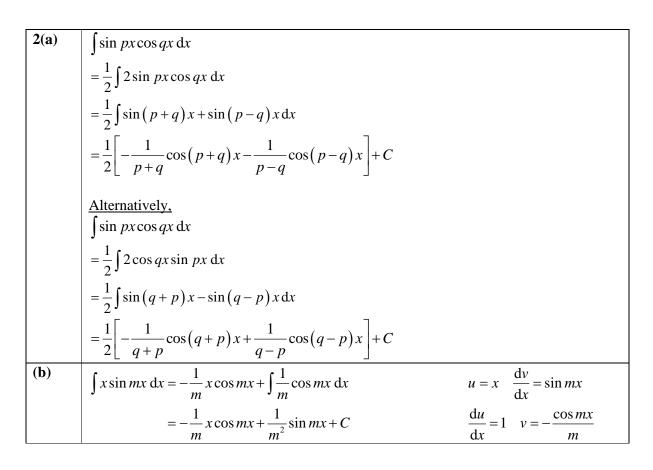
2024 JC2 H2 Maths Prelim Paper 2 Solutions





(c)

$$\int_{0}^{\pi} x \sin mx \, dx$$

$$= \left[-\frac{1}{m} x \cos mx + \frac{1}{m^{2}} \sin mx \right]_{0}^{\pi}$$

$$= \left[-\frac{1}{m} \pi \cos m\pi + \frac{1}{m^{2}} \sin m\pi \right] - \left[-\frac{1}{m} (0) \cos 0 + \frac{1}{m^{2}} \sin (0) \right]$$

$$= -\frac{1}{m} \pi \cos m\pi$$
When *m* is odd, $\int_{0}^{\pi} x \sin mx \, dx = -\frac{1}{m} \pi (-1) = \frac{1}{m} \pi$
When *m* is even, $\int_{0}^{\pi} x \sin mx \, dx = -\frac{1}{m} \pi (1) = -\frac{1}{m} \pi$

$$k = 1 \text{ or } -1$$

3(i)	$f'(x) = e^{\tan^{-1}x} \left(\frac{1}{1+x^2}\right)$
	$(1+x^2)f'(x) = f(x)$
	Alternatively,
	$f(x) = e^{\tan^{-1}x}$
	$\ln f(x) = \tan^{-1} x$
	Differentiate with respect to x
	$\frac{1}{f(x)}f'(x) = \frac{1}{1+x^2}$
	$(1+x^2)f'(x) = f(x)$
(ii)	$(1+x^2)f'(x) = f(x)$
	Differentiate with respect to <i>x</i>
	$(1+x^2)f''(x) + 2xf'(x) = f'(x)$
	Differentiate with respect to x
	$(1+x^2)f''(x) + 2xf''(x) + 2xf''(x) + 2f'(x) = f''(x)$
	$(1+x^2)f''(x) + 4xf'(x) + 2f'(x) = f''(x)$
	When $x = 0$, $y = f(0) = e^{\tan^{-1}0} = 1$
	$(1+0)f'(x) = 1 \Longrightarrow f'(x) = 1$
	$(1+0)f''(x) + 0 = 1 \Longrightarrow f''(x) = 1$
	$(1+0)f''(x) + 0 + 2(1) = 1 \Longrightarrow f''(x) = -1$
	$y = f(x) = e^{\tan^{-1}x} = 1 + x + \frac{1}{2!}x^2 - \frac{1}{3!}x^3 + \dots \approx 1 + x + \frac{1}{2}x^2 - \frac{1}{6}x^3$
(iii)	$\int_{0}^{0.5} \mathbf{f}(x) \mathrm{d}x \approx \int_{0}^{0.5} 1 + x + \frac{1}{2} x^2 - \frac{1}{6} x^3 \mathrm{d}x \approx 0.6432 (4\mathrm{s.f.})$
(iv)	The series is a good approximation for $f(x)$ if x is close to 0. Since $x = 1$ is not close to 0,
	it is <u>not suitable</u> to be used to estimate $e^{\frac{\pi}{4}}$.

$$\begin{array}{l} \textbf{46i} \qquad \qquad \frac{7}{n-2} - \frac{5}{n-1} - \frac{2}{n} = \frac{7(n-1)n - 5(n-2)n - 2(n-2)(n-1)}{(n-2)(n-1)n} \\ \qquad = \frac{7n^2 - 7n - 5n^2 + 10n - 2n^2 + 6n - 4}{(n-2)(n-1)n} \\ \textbf{Obtain} \quad \frac{9n - 4}{(n-2)(n-1)n} & (\textbf{Shown}) \\ \underline{\textbf{Alternative : By partial fractions}} \\ \text{Let} \quad \frac{9n - 4}{(n-2)(n-1)n} = \frac{A}{n-2} + \frac{B}{n-1} + \frac{C}{n} \\ 9n - 4 = A(n-1)n + B(n-2)n + C(n-2)(n-1) \\ \text{Subst } n = 2, \text{ obtain } A = 7 \\ \text{Subst } n = 1, \text{ obtain } B = -5 \\ \text{Subst } n = 1, \text{ obtain } B = -5 \\ \text{Subst } n = 0, \text{ obtain } C = -2 \\ \text{Obtain} \quad \frac{9n - 4}{(n-2)(n-1)n} = \sum_{n=3}^{N} \left[\frac{7}{(n-2)} - \frac{5}{(n-1)} - \frac{2}{n} \right] \\ \hline \textbf{(ii)} \qquad \qquad \sum_{n=3}^{N} \frac{9n - 4}{(n-2)(n-1)n} = \sum_{n=3}^{N} \left[\frac{7}{(n-2)} - \frac{5}{(n-1)} - \frac{2}{n} \right] \\ = \begin{bmatrix} \frac{7}{1} - \frac{5}{2} - \frac{2}{3} \\ + \frac{7}{2} - \frac{5}{3} - \frac{2}{3} \\ + \frac{7}{2} - \frac{5}{3} - \frac{2}{3} \\ + \frac{7}{2} - \frac{5}{3} - \frac{2}{3} \\ + \frac{7}{1} - \frac{5}{3} - \frac{2}{3} \\ = 8 - \left[\frac{7}{1} - \frac{1}{2} - \frac{2}{3} \right] \\ = 8 - \left[\frac{7}{1} - \frac{1}{2} - \frac{2}{3} \right] \\ \textbf{(ii)} \qquad \qquad \sum_{n=3}^{N} \frac{9n - 4}{(n-2)(n-1)n} = 8 - \left[\frac{7}{N-1} + \frac{2}{N} \right] \\ \textbf{As } N \to \infty, \quad \frac{7}{N-1} \to 0 \text{ and } \frac{2}{N} \to 0, \quad \sum_{n=3}^{N} \frac{9n - 4}{(n-2)(n-1)n} \to 8 \text{ which is finite.} \\ \text{Hence } \sum_{n=3}^{N} \frac{9n - 4}{(n-2)(n-1)n} \text{ is convergent and the sum to infinity is 8.} \\ \end{array}$$

$$\sum_{n=3}^{N} \frac{9n-4}{(n-2)(n-1)n} = \frac{23}{(1)(2)(3)} + \left(\frac{32}{(2)(3)(4)} + \frac{41}{(3)(4)(5)} + \dots + \frac{9N-4}{(N-2)(N-1)N}\right)$$

$$\sum_{n=2}^{N} \frac{9n+14}{n(n+1)(n+2)} = \left(\frac{32}{(2)(3)(4)} + \frac{41}{(3)(4)(5)} + \dots + \frac{9N-4}{(N-2)(N-1)(N)}\right) + \frac{9N+5}{(N-1)(N)(N+1)} + \frac{9N+14}{N(N+1)(N+2)}$$

$$= \sum_{n=4}^{N+2} \frac{9n-4}{(n-2)(n-1)n} \quad \text{Note : replace } n \text{ by } n - 2$$

$$= \sum_{n=3}^{N+2} \frac{9n-4}{(n-2)(n-1)n} - \frac{23}{(1)(2)(3)}$$

$$= 8 - \left[\frac{7}{N+2-1} + \frac{2}{N+2}\right] - \frac{23}{6}$$

$$= \frac{25}{6} - \left[\frac{7}{N+1} + \frac{2}{N+2}\right]$$

5(i)

$$\overrightarrow{OA} = \begin{pmatrix} 5\\0\\0\\0 \end{pmatrix}, \ \overrightarrow{OB} = \begin{pmatrix} -4\\-3\\0\\0 \end{pmatrix}, \ \overrightarrow{OC} = \begin{pmatrix} -5\\0\\6\\6 \end{pmatrix}$$
Since *ABCD* is a parallelogram,

$$\overrightarrow{AD} = \overrightarrow{BC}$$

$$\overrightarrow{OD} - \overrightarrow{OA} = \overrightarrow{OC} - \overrightarrow{OB}$$

$$= \begin{pmatrix} -5\\0\\6\\0 \end{pmatrix} - \begin{pmatrix} -4\\-3\\0\\0 \end{pmatrix} = \begin{pmatrix} -1\\3\\6 \end{pmatrix}$$

$$\overrightarrow{OD} = \begin{pmatrix} -1\\3\\6 \end{pmatrix} + \begin{pmatrix} 5\\0\\0 \end{pmatrix}$$

$$= \begin{pmatrix} 4\\3\\6 \end{pmatrix}$$

	$\overrightarrow{BA} = \begin{pmatrix} 5\\0\\0 \end{pmatrix} - \begin{pmatrix} -4\\-3\\0 \end{pmatrix} = \begin{pmatrix} 9\\3\\0 \end{pmatrix}$				
	$\overrightarrow{BA} \cdot \overrightarrow{BC} = \begin{pmatrix} 9\\3\\0 \end{pmatrix} \cdot \begin{pmatrix} -1\\3\\6 \end{pmatrix} = 0$				
	Since ABCD is a parallelogram and $AB \perp BC$, ABCD is a rectangle.				
(ii)	$\overrightarrow{BA} \times \overrightarrow{BC} = \begin{pmatrix} 9\\3\\0 \end{pmatrix} \times \begin{pmatrix} -1\\3\\6 \end{pmatrix} = 3 \begin{pmatrix} 3\\1\\0 \end{pmatrix} \times \begin{pmatrix} -1\\3\\6 \end{pmatrix} = 6 \begin{pmatrix} 3\\-9\\5 \end{pmatrix}$				
	Normal to the plane $ABC = n = \begin{pmatrix} 3 \\ -9 \\ 5 \end{pmatrix}$.				
	$\overrightarrow{OA} \cdot \begin{pmatrix} 3 \\ -9 \\ 5 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -9 \\ 5 \end{pmatrix} = 15$				
	Vector equation of plane <i>ABC</i> is (2)				
	$\tilde{r} \cdot \begin{pmatrix} 3 \\ -9 \\ 5 \end{pmatrix} = 15$				
	Cartesian equation of plane ABC is $3x - 9y + 5z = 15$.				
(iii)	Normal vector of the base is parallel to \overrightarrow{OE} .				
	Hence, normal vector of the base = $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$				
	Acute angle between plane ABC and the base				
	$= \cos^{-1} \frac{\begin{pmatrix} 3 \\ -9 \\ 5 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}}{\begin{pmatrix} 3 \\ -9 \\ 5 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}}$				
	$= \cos^{-1} \frac{ 5 }{\sqrt{3^2 + 9^2 + 5^2} \sqrt{1}}$				
	$=\cos^{-1}\frac{5}{\sqrt{115}}$				
	$= \underline{\underline{62.2^{\circ}}} (1 \text{ dp})$				

(iv) Since
$$AF : AE = 1:5$$
,
 $\overline{AF} = \frac{1}{5}\overline{AE} = \frac{1}{5}\begin{bmatrix} 0\\0\\10 \end{bmatrix} - \begin{pmatrix} 5\\0\\0 \end{bmatrix} = \begin{pmatrix} -1\\0\\2 \end{bmatrix}$
Length of projection of AF onto plane ABC
 $= \frac{|\overline{AF} \times \underline{n}|}{|\underline{n}|}$
 $= \frac{\begin{vmatrix} -1\\0\\2 \end{pmatrix} \times \begin{pmatrix} 3\\-9\\5 \end{vmatrix}}{\begin{vmatrix} 3\\-9\\5 \end{vmatrix}}$
 $= \frac{\begin{vmatrix} 1\\0\\2 \end{pmatrix} \times \begin{pmatrix} 3\\-9\\5 \end{vmatrix}}{\begin{vmatrix} 3\\-9\\5 \end{pmatrix}}$
 $= \frac{\begin{vmatrix} 1\\0\\2 \end{pmatrix} \times \begin{pmatrix} 3\\-9\\5 \end{pmatrix}}{\begin{vmatrix} 3\\-9\\5 \end{pmatrix}}$
 $= \frac{\begin{vmatrix} 1\\0\\2 \end{pmatrix} \times \begin{pmatrix} 3\\-9\\5 \end{pmatrix}}{\begin{vmatrix} 3\\-9\\5 \end{pmatrix}}$
 $= \frac{\begin{vmatrix} 1\\0\\2 \end{pmatrix} \times \begin{pmatrix} 3\\-9\\5 \end{pmatrix}}{\begin{vmatrix} 3\\-9\\5 \end{pmatrix}}$
 $= \frac{\begin{vmatrix} 1\\0\\2 \end{pmatrix} \times \begin{pmatrix} 3\\-9\\5 \end{pmatrix}}{\begin{vmatrix} 3\\-9\\5 \end{pmatrix}}$
 $= \frac{\begin{vmatrix} 1\\0\\2 \end{pmatrix} \times \begin{pmatrix} 3\\-9\\5 \end{pmatrix}}{\begin{vmatrix} 3\\-9\\5 \end{pmatrix}}$
 $= \frac{\begin{vmatrix} 1\\0\\2 \end{pmatrix} \times \begin{pmatrix} 3\\-9\\5 \end{pmatrix}}{\begin{vmatrix} 3\\-9\\5 \end{pmatrix}}$
 $= \frac{\begin{vmatrix} 1\\0\\2 \end{pmatrix} \times \begin{pmatrix} 3\\-9\\5 \end{pmatrix}}{\begin{vmatrix} 3\\-9\\5 \end{pmatrix}}$
 $= \frac{\begin{vmatrix} 1\\0\\2 \end{pmatrix} \times \begin{pmatrix} 3\\-9\\5 \end{pmatrix}}{\begin{vmatrix} 3\\-9\\5 \end{pmatrix}}$
 $= \frac{\begin{vmatrix} 1\\0\\2 \end{pmatrix} \times \begin{pmatrix} 3\\-9\\5 \end{pmatrix}}{\begin{vmatrix} 3\\-9\\5 \end{pmatrix}}$
 $= \frac{\begin{vmatrix} 1\\0\\2 \end{pmatrix} \times \begin{pmatrix} 3\\-9\\5 \end{pmatrix}}{\begin{vmatrix} 3\\-9\\5 \end{pmatrix}}$
 $= \frac{\begin{vmatrix} 1\\0\\2 \end{pmatrix} \times \begin{pmatrix} 3\\-9\\5 \end{pmatrix}}{\begin{vmatrix} 3\\-9\\5 \end{pmatrix}}$
 $= \frac{\begin{vmatrix} 5\\0\\-1\\15 \end{pmatrix}}{\langle 5\\-2\\1387 \end{pmatrix}$
 ≈ 2.14

6(a)(i)	Since there is only one way the letters are in alphabetical order,						
	Total number of ways = $\frac{11!}{3!2!2!}$ -1						
	= 1 663 199						
(a)(ii)	$ \begin{array}{c} $						
	Total number of ways = $\frac{4!}{2!} \times \frac{5!}{2!} \times {}^{5}P_{2} = 14\ 400$						
(b)	<u>Method 1:</u> Probability = $\frac{6}{11} \times \frac{5}{10} \times \frac{4}{9} \times \frac{3!}{2!} + \frac{5}{11} \times \frac{4}{10} \times \frac{3}{9} = \frac{14}{33}$ (or 0.424)						
	<u>Method 2:</u> Probability = $\frac{{}^{6}C_{1}{}^{5}C_{2} + {}^{5}C_{3}}{{}^{11}C_{3}}$						
	<u>Method 3</u> : Probability = $1 - \frac{{}^{6}C_{3}}{{}^{11}C_{3}} - \frac{{}^{5}C_{1}{}^{6}C_{2}}{{}^{11}C_{3}} = \frac{14}{33}$						
ĺ							

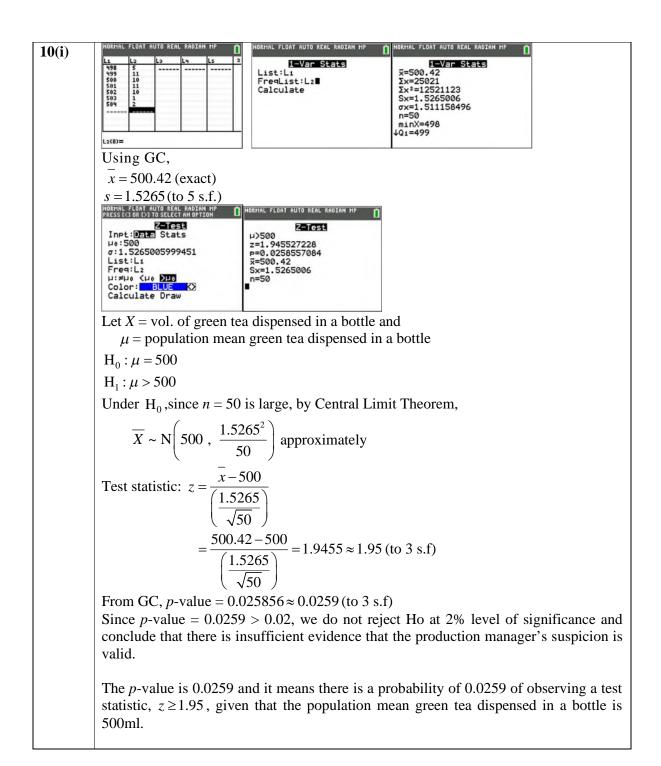
7(i)	y ↑					
	265 ······					
	×					
	×					
	×					
	155× ˆ					
	6 18					
(ii)	(a) Correlation coefficient between x and y is $r = 0.9483$ (4 d.p.)					
	(b) Correlation coefficient between $\ln x$ and y is $r = 0.9849$ (4 d.p.)					
(iii)	From the scatter diagram, as x increases, y increases at a decreasing rate.					
	In addition, the product moment correlation coefficient between $\ln x$ and y, 0.9849, is					
	closer to +1 as compared to that between x and y, 0.9483 .					
	Hence $y = c \ln x + d$ is the better model.					
(iv)	Since x is the independent variable, neither the regression line of x on y nor the regression					
	line of ln x on y should be used to estimate the value of x when $y = 200$.					
(v)	Equation of regression line of <i>y</i> on ln <i>x</i> is					
(•)						
	$y = 106.5611 \ln x - 31.2643$					
	$y = 107 \ln x - 31.3$					
	when $y = 200$, $200 = 106.5611 \ln x - 31.2643$					
	x = 8.76 (3 s.f.)					
	Since $y = 200$ is within the given range of data, which is an interpolation, and <i>r</i> is close to +1, indicating a strong positive linear correlation, the estimate is reliable.					

8 (i)	P(packet is unsatisfactory)						
	$= 1 - (0.99)(0.98)^2 (0.96)$						
	$= 0.087236 \approx 0.0872$ (3 s.f.)						
(ii)	<i>X</i> ~ B(180, 0.087236)						
	$P(5 \le X < 10) = P(X \le 9) - P(X \le 4)$						
	$= 0.042669 \approx 0.0427$						
(iii)	$P(X > r) \le 0.12$						
	$1 - P(X \le r) \le 0.12$						
	$P(X \le r) \ge 0.88$						
	From GC, $P(X \le 19) = 0.8429 \ (< 0.88)$						
	$P(X \le 20) = 0.8947 \ (> 0.88)$						
	$P(X \le 21) = 0.9323 \ (> 0.88)$						
	\therefore least $r = 20$						
(iv)	Each packet has an equal chance of being selected and the selection of the packets is						
	independent of one another.						
	This method of selection is done so that a random sample will be obtained which is free from bias and will be representative of the population.						

(v) Required probability $= (0.087236)^{2} \times (0.912764)^{6} \times \frac{8!}{2!6!} \times (0.087236)$ $= 0.010749 \approx 0.0107$ <u>Alternative Method</u> Let Y be the the number of packets (out of 8) that are unsatisfactory. Y ~ B(8, 0.087236) Required probability = P(Y = 2) × (0.087236) = 0.010749 ≈ 0.0107

0(*)						
9(i)		Box A	Box B	(B) 4 $\left(\frac{1}{3}\right)$	(R) 5	$\left(\frac{2}{3}\right)$
		(B) 1	$\left(\frac{1}{5}\right)$	5	5	
		(R) 2	$2\left(\frac{2}{5}\right)$	8	7	
		(R) 3	$\left(\frac{2}{5}\right)$	12	8	
	P(X =	= 8) = P(2 from)				
	+ P(3 from Box A and 5 from Box B) (2)(1) (2)(2)					
	$= \left(\frac{2}{5}\right)\left(\frac{1}{3}\right) + \left(\frac{2}{5}\right)\left(\frac{2}{3}\right)$					
		$=\frac{2}{5}$				
(ii)	$P(X = 5) = \left(\frac{1}{5}\right)\left(\frac{1}{3}\right) + \left(\frac{1}{5}\right)\left(\frac{2}{3}\right) = \frac{1}{5}$					
	$P(X = 7) = \left(\frac{2}{5}\right)\left(\frac{2}{3}\right) = \frac{4}{15}$					
	$P(X = 12) = \left(\frac{2}{5}\right)\left(\frac{1}{3}\right) = \frac{2}{15}$					
	The probability distribution of <i>X</i> is					
		x	5	7	8	12
		(=x)	$\frac{1}{5}$	$\frac{4}{15}$	$\frac{2}{5}$	$\frac{2}{15}$
	1 (2	(-x)	5	15	5	15
(iii)	$E(X) = 5\left(\frac{1}{5}\right) + 7\left(\frac{4}{15}\right) + 8\left(\frac{2}{5}\right) + 12\left(\frac{2}{15}\right) = \frac{23}{3}$					
	$E(X^{2}) = 5^{2} \left(\frac{1}{5}\right) + 7^{2} \left(\frac{4}{15}\right) + 8^{2} \left(\frac{2}{5}\right) + 12^{2} \left(\frac{2}{15}\right) = \frac{943}{15}$					
	Var(X)	$0 = \frac{943}{15}$	$-\left(\frac{23}{3}\right)$	$^{2} = \frac{184}{45}$		

(iv) Since sample size
$$n = 50$$
 is large, by Central Limit Theorem,
 $\overline{X} \sim N\left(\frac{23}{3}, \frac{184}{45(50)}\right) = N\left(\frac{23}{3}, \frac{92}{1125}\right)$ approximately.
 $P\left(7.5 < \overline{X} < 8.5\right) = 0.71821 \approx 0.718 (3 \text{ s.f.})$



(ii)	For the production manager's suspicion ($\mu > 500$) to be valid, H ₀ is rejected. Hence,					
	p -value = 0.025856 < $\frac{\alpha}{100}$					
	100 ∴ 2.59 < α < 100 (3 s.f)					
(iii)	Since the sample size = 50 is large enough, Central Limit Theorem can be applied for sample means to follow a normal distribution approximately.					
(b)	$s^{2} = \frac{n}{n-1}\sigma_{x}^{2} = \frac{50}{49}k^{2}$					
	$H_0: \mu = 500$					
	$H_1: \mu \neq 500$					
	Under H_0 , since $n = 50$ is large, by Central Limit Theorem,					
	$\overline{X} \sim N\left(500, \frac{\left(\frac{50k^2}{49}\right)}{50}\right) = N\left(500, \frac{k^2}{49}\right) \text{ approximately}$					
	Test statistic: $z = \frac{\bar{x} - 500}{\sqrt{\frac{k^2}{49}}} = \frac{502 - 500}{\frac{k}{7}} = \frac{14}{k}$					
	For $\alpha = 0.05$,					
	-1.95996 0 1.95996					
	If recalibration is done accurately ($\mu = 500$), H ₀ is not rejected. Hence,					
	-1.95996 < z < 1.95996					
	$-1.95996 < \frac{14}{k} < 1.95996$					
	$\frac{k}{14} < -0.51021 \text{ (rejected) or } \frac{k}{14} > 0.51021$					
	<i>k</i> > 7.1430					
	$\therefore k > 7.14 \text{(to 3 s.f)}$					

11(i) Let *D* be the time in minutes past 7 pm that Benedict finishes his dinner.
Let *M* be the time in minutes he spends on social media.
$$D \sim N(10, 2^2)$$
 and $M \sim N(k, 12^2)$,
Then $D + M \sim N(10 + k, 148)$
Given $P(D + M > 60) = 0.125$
 $P\left(Z > \frac{60 - (10 + k)}{\sqrt{148}}\right) = 0.125$

	$\frac{50-k}{\sqrt{148}} = 1.15035$
	$k = 50 - 1.15035\sqrt{148} = 36.005 \approx 36.0$
(ii)	$D + M \sim N(46, 148)$ 0 46 60
(iii)	$X = D + M \sim N(46, 148)$ $Y = D + G \sim N(55, 104)$ Then $Y - X \sim N(9, 252)$ $P(Y - X \le 5) = P(-5 \le Y - X \le 5)$ $= 0.21162 \approx 0.212$
(iv)	P(started revision late) = 0.8 P(D + M > 60) + 0.2 P(D + G > 60) = 0.16232 P(played online games started revision late) = $\frac{0.2 P(D + G > 60)}{0.16232}$ = 0.38438 \approx 0.384
(v)	D, M and G are independent normal variables.