Check your Understanding (Graphing)

Section 1:Asymptotes

<u>MUTIPLE CHOICE.</u> Choose the one alternative that best completes the statement or answers the question.

1. What is the vertical asymptote(s) of $h(x) = \frac{1}{x-4}$?

- (a) None (b) x = 4
- (c) x = -4
- (d) x = 1

(b)

- 2. What is the horizontal asymptote(s) of $h(x) = 2 + \frac{1}{x-4}$?
 - (a) None
 - (b) y = 4
 - (c) y = 2
 - (d) x = 4

(c)

- 3. What is the vertical asymptote(s) of $h(x) = \frac{x}{x-4}$?
 - (a) None (b) x = 4(c) x = -4
 - (d) x = 1

(b)

(d)

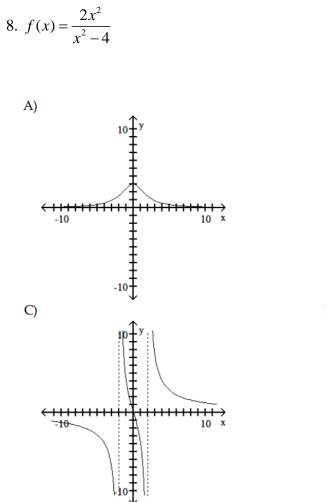
- 4. What is the horizontal asymptote(s) of $h(x) = \frac{x}{x-4}$?
 - (a) None (b) y = 4
 - (c) y = 2
 - (d) y = 1

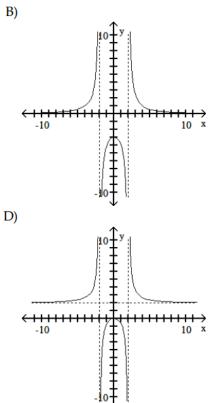
- 5. What is the horizontal asymptote(s) of $h(x) = \frac{32x^2}{8x^2 5}$?
 - (a) None (b) y = 4(c) y = 5(d) $y = \sqrt{5}$ (b)

6. What is the vertical asymptote(s) of $h(x) = \frac{x-5}{(x-9)(x+8)}$?

- (a) x = 9, x = -8(b) x = 5(c) x = -9, x = 8(d) x = -5(a)
- 7. What is the horizontal asymptote(s) of $h(x) = \frac{x^2 + 3x 4}{x 4}$?
 - (a) None (b) y = 4
 - (c) y = 1(c) y = 2
 - (d) y = -3 (d)

Match the equation with the appropriate graph?





(D)

Section 2: Stationary points

9. **RI Promo 8865/2018/Q6 (part)**

The curve *C* has equation y = f(x) where $f(x) = 6x - 3x^2 - 4x^3$.

(i) Find $\frac{dy}{dx}$. Hence find the coordinates of the stationary points on the curve.

(ii) Use a non-calculator method to determine the nature of each of the stationary points.Solution:

(i)

 $\frac{dy}{dx} = 6 - 6x - 12x^{2}$ For stationary points, $\frac{dy}{dx} = 0$ $\Rightarrow 6 - 6x - 12x^{2} = 0 \Rightarrow x = -1 \text{ or } \frac{1}{2}$ When x = -1, y = -5When $x = \frac{1}{2}$, $y = \frac{7}{4}$ \therefore Coordinates of the stationary points are (-1, -5) and $(\frac{1}{2}, \frac{7}{4})$.

(ii)

 $\frac{d^2 y}{dx^2} = -6 - 24x$ When x = -1, $\frac{d^2 y}{dx^2} = 18 > 0$ (minimum point) When $x = \frac{1}{2}$, $\frac{d^2 y}{dx^2} = -18 < 0$ (maximum point) \therefore (-1, -5) is a minimum point and $\left(\frac{1}{2}, \frac{7}{4}\right)$ is a maximum point.

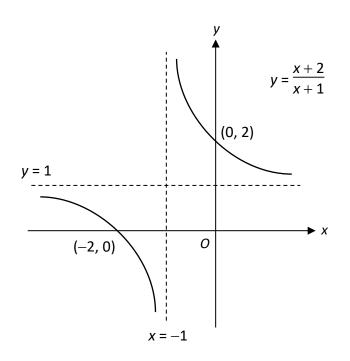
Section 3: Graphing Problems

10. RIJC Promo 8865/2015/Q2

Sketch the curve with equation

$$y = \frac{x+2}{x+1},$$

stating the equations of any asymptotes and the coordinates of the points where the curve crosses the axes.



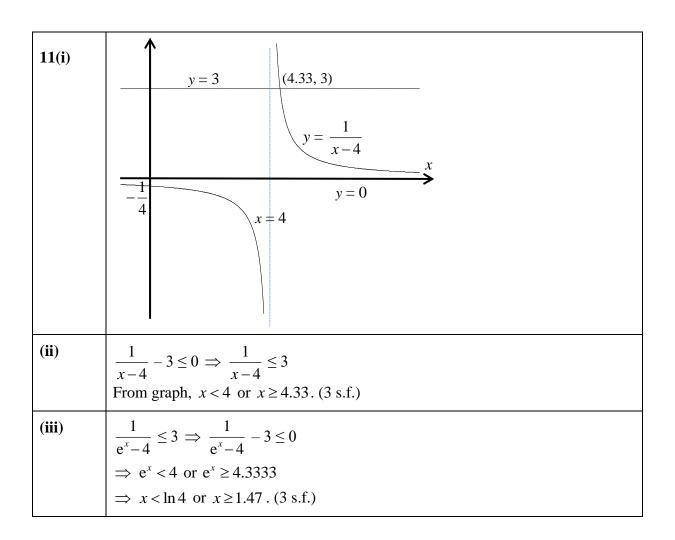
11. MIJC Promo 8865/2015/Q5

(i) Sketch the graph of
$$y = \frac{1}{x-4}$$
. [2]

(ii) By drawing an additional graph in (i), solve the inequality $\frac{1}{x-4} - 3 \le 0.$ [2]

(iii) Hence solve the inequality
$$\frac{1}{e^x - 4} \le 3$$
. [3]

Answer: (ii) x < 4 or $x \ge 4.33$. (3 s.f.) (iii) $x < \ln 4$ or $x \ge 1.47$. (3 s.f.)



12. MIJC Promo 8865/2015/6

The curve *C* has equation $y = \frac{bx+3}{x+a}$, where *a* and *b* are constants. It is given that x = 1 and y = 2 are vertical and horizontal asymptotes of *C* respectively.

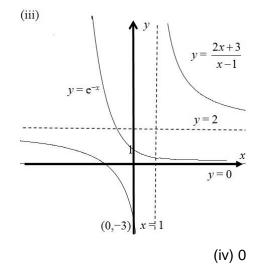
- (i) State the values of *a* and *b*.
- (ii) Given further that C intersects the y-axis at (0, -3), find the coordinates of the point of intersection with the x-axis. [2]
- (iii) Sketch the graph of $y = \frac{bx+3}{x+a}$, showing clearly all the asymptotes and intersections with both axes. [3]
- (iv) By adding a suitable graph to the sketch in (iii), determine the number of solutions of the equation

$$\ln\left(\frac{bx+3}{x+a}\right) = -x \tag{3}$$

Answer: (i) a = -1, b = 2

(ii)
$$(-\frac{3}{2}, 0)$$

[2]



12(i)	a = -1, b = 2.
12(ii)	When $y = 0$, $0 = \frac{2x+3}{x-1} \implies x = -\frac{3}{2}$.
	Hence, required point is $(-\frac{3}{2}, 0)$.
12(iii)	$y = e^{-x}$ $y = \frac{2x+3}{x-1}$ $y = 2$ $(-\frac{3}{2}, 0)$ $(0,-3)$ $x = 1$
12(iv)	$\ln\left(\frac{bx+3}{x+a}\right) = -x \Longrightarrow \frac{bx+3}{x+a} = e^{-x}$
	From the graph in (iii), since the graph of $y = e^{-x}$ and the graph of $y = \frac{bx+3}{x+a}$ do
	not intersect, the required number of solutions $= 0$.

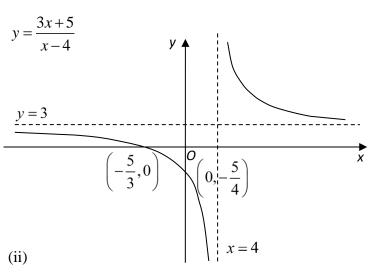
13. RVHS Promo 8865/2018/Q4

- (i) Sketch the graph of $y = \frac{3x+5}{x-4}$, labelling clearly the equations of any asymptotes and the exact coordinates of any points where the curve crosses the axes.
- (ii) Hence, find the exact solution(s) of the inequality $\frac{3x^2+5}{x^2-4} > 0$.
- (iii) By adding a suitable curve to the sketch in part (i), solve $e^{\frac{3x+5}{x-4}} \le x+3$.

Answer: x < -2 or x > 2; $-1.88 \le x < 4$ or $x \ge 33.1$

Solution:

(i)

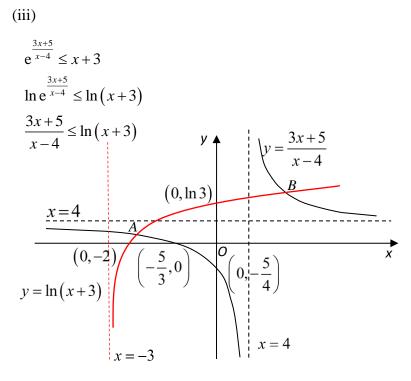


Solving $\frac{3x+5}{x-4} > 0$ from the graph in (i), we have

$$x < -\frac{5}{3}$$
 or $x > 4$

Replacing x with x^2 , we have

$$x^{2} < -\frac{5}{3}$$
(rej) or $x^{2} > 4$
 $x < -2$ or $x > 2$



Intersections : A(-1.88, 0.110) and B(33.1, 3.59)

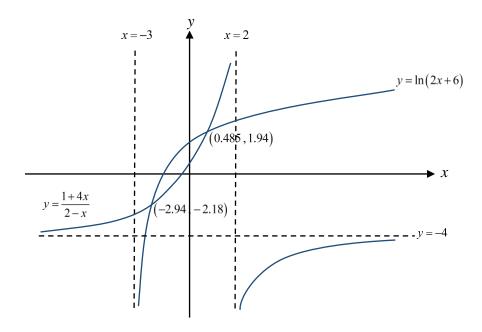
 $-1.88 \le x < 4$ or $x \ge 33.1$

14. TJC Promo 8865/2018/Q5

Sketch the curves $y = \frac{1+4x}{2-x}$ and $y = \ln(2x+6)$ on the same diagram, stating clearly the equation of any asymptotes and coordinates of any intersection points.

Hence solve the inequality $\frac{1+4x}{2-x} \ge \ln(2x+6)$.

Answer: $-3 < x \le -2.94$ or $0.485 \le x < 2$



$$\frac{1+4x}{2-x} \ge \ln(2x+6)$$

-3 < x ≤ -2.94 or 0.485 ≤ x < 2