AJC Preliminary Examination 2012 H2 Mathematics Paper 2 (9740/02) Solution

Section A: Pure Mathematics (40 marks)

1 DE =
$$2\left[2\sin\frac{\theta}{2}\right] = 4\sin\frac{\theta}{2}$$

Alternative, use cosine rule

Perimeter = $4x^2 + 2[4\sin\frac{\theta}{2}] = 8[1 + 4\sin\frac{\theta}{2}]$

$$\text{Unit cost} = \frac{28000}{8[1 + \sin\frac{\theta}{2}]} = 3500 \left(1 + \sin\frac{\theta}{2}\right)^{-1} \\
 \approx 3500 \left(1 + \frac{\theta}{2}\right)^{-1} \\
 = 3500 (1 - \frac{\theta}{2} ...) \\
 \approx 3500 - 1750\theta$$

2 (i)
$$f(4) = f(-2) = -f(2) = -1$$
.

(iii)
$$\int_{-5}^{7} |f(x)| dx = 4 \left[\frac{1}{2} \times 4 \times 1 + \int_{1}^{3} (3 - x)^{2} dx \right]$$
$$= 4 \left[2 + \left[\frac{(3 - x)^{3}}{-3} \right]_{1}^{3} \right]$$
$$= 8 - \frac{4}{3} [0 - 8] = \frac{56}{3}$$

3 line
$$l: 2-x=\frac{y-3}{3}, z=2 \implies r=\begin{pmatrix} 2\\3\\2 \end{pmatrix}+\lambda \begin{pmatrix} -1\\3\\0 \end{pmatrix} \lambda \in \square$$

(i)
$$\overrightarrow{CD} = \begin{pmatrix} 3 \\ \alpha \\ \beta \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ \alpha - 3 \\ \beta - 2 \end{pmatrix} = k \begin{pmatrix} -1 \\ 3 \\ 0 \end{pmatrix}$$

Hence k = -1, $\alpha = 0$ and $\beta = 2$

(ii) Equation of y-z plane is x = 0.

At the point of intersection F of the line *l* and the *y-z* plane, $2-\lambda=0 \Rightarrow \lambda=2$.

Hence F (0, 9, 2)

Alternative method: Let E be the foot of
$$\perp$$
 from C to y-z plane $r = 0$

Line CE:
$$\underline{r} = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 + \mu \\ 3 \\ 2 \end{pmatrix}$$
.

When line CE meets y-z plane:
$$r = \begin{pmatrix} 2+\mu \\ 3 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 0 \implies \mu = -2$$
. $\vec{OE} = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix} + (-2) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix}$

By mid-point theorem,
$$\overrightarrow{OE} = \frac{\overrightarrow{OC} + \overrightarrow{OC'}}{2} \implies \overrightarrow{OC'} = 2\overrightarrow{OE} - \overrightarrow{OC} = 2\begin{pmatrix} 0\\3\\2 \end{pmatrix} - \begin{pmatrix} 2\\3\\2 \end{pmatrix} = \begin{pmatrix} -2\\3\\2 \end{pmatrix}$$

4 (a)
$$\frac{dy}{dx} + 4(x - y)^2 \cos^2 x = \sin^2 x$$

Using
$$u = x - y$$
, $\frac{du}{dx} = 1 - \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = 1 - \frac{du}{dx}$

$$1 - \frac{du}{dx} + 4u^2 \cos^2 x = \sin^2 x$$

$$\frac{du}{dx} = 4u^2 \cos^2 x + 1 - \sin^2 x$$

$$\frac{du}{dx} = \left(1 + 4u^2\right)\cos^2 x$$

$$\int \frac{1}{1+4u^2} du = \frac{1}{2} \int (1+\cos 2x) dx$$

$$\frac{1}{4} \int \frac{1}{\frac{1}{4} + u^2} du = \frac{1}{2} \int (1 + \cos 2x) dx$$

$$\frac{1}{4} \left[2 \tan^{-1} 2u \right] = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) + c$$

$$\tan^{-1} \left[2(x-y) \right] = x + \frac{1}{2} \sin 2x + c$$

(b)(i)
$$\frac{dx}{dt} = R - kx^2$$
, k is a positive constant

At
$$x = 2R$$
, $\frac{dx}{dt} = 0$

$$0 = R - k(2R)^2 \Longrightarrow 0 = R(1 - 4kR) \Longrightarrow k = \frac{1}{4R}$$

$$\frac{dx}{dt} = R - \frac{x^2}{4R}$$

$$\int \frac{4R}{4R^2 - x^2} dx = \int 1 dt$$

$$\ln\left|\frac{2R+x}{2R-x}\right| = t + C$$

$$\frac{2R+x}{2R-x} = \pm e^C e^t \quad \Rightarrow \quad \frac{2R+x}{2R-x} = Ae^t , A = \pm e^C$$

At
$$t = 0, x = 0 \Rightarrow A = 1$$
 Hence $\frac{2R + x}{2R - x} = e^t \Rightarrow x = 2R \left\lceil \frac{e^t - 1}{1 + e^t} \right\rceil$

(b)(ii)
$$x = 2R \left[\frac{1 - \frac{1}{e^t}}{\frac{1}{e^t} + 1} \right]$$
 As $t \to \infty$, $\frac{1}{e^t} \to 0 \Rightarrow x \to 2R$ [or use graphical method]

The amount of drug in the body will not exceed 2R mg regardless of the period of treatment.

5
$$z^{3} = \frac{1}{\sqrt{2}} \left(1 + \frac{2}{2a - 1} \mathbf{i} \right)$$

$$\arg(z^{3}) = -\frac{\pi}{4} \Rightarrow \frac{2}{2a - 1} = -1 \Rightarrow a = -\frac{1}{2}$$
(i)
$$z^{3} = \frac{1}{\sqrt{2}} (1 - \mathbf{i}) \Rightarrow z^{3} = e^{\mathbf{i} \left(-\frac{\pi}{4} + 2k\pi \right)} , k = 0, +1, -1$$

$$z = e^{\mathbf{i} \left(-\frac{\pi}{12} + \frac{2k\pi}{3} \right)}, k = 0, \pm 1$$

$$z = \cos\left(\frac{-\pi}{12} \right) + i\sin\left(\frac{-\pi}{12} \right), z = \cos\left(\frac{-3\pi}{4} \right) + i\sin\left(\frac{-3\pi}{4} \right) \text{ and } z = \cos\left(\frac{7\pi}{12} \right) + i\sin\left(\frac{7\pi}{12} \right)$$

$$\sqrt{2} \left(\frac{w}{1 + i} \right)^{3} = 1 - \mathbf{i} \Rightarrow \left(\frac{w}{\sqrt{2}e^{i\frac{\pi}{4}}} \right)^{3} = \frac{1 - \mathbf{i}}{\sqrt{2}}$$

$$\frac{w}{\sqrt{2}e^{i\frac{\pi}{4}}} = z \Rightarrow w = \sqrt{2}e^{i\frac{\pi}{4}}z$$

The points representing w is an anti-clockwise rotation of the points representing z about the origin by $\frac{\pi}{4}$, followed by an enlargement by factor $\sqrt{2}$ about the origin.

Section B: Statistics (60 marks)

6 PP EEE CRTIV

i) number of ways =
$$\frac{6! \times 7 \times 6 \times 5 \times 4}{3! \times 2!} = 50400$$

Case 1: 2 E
$$7! = 5040$$

Case 2: 1 E $\binom{5}{1} \times 2! \times \frac{7!}{2!} = 25200$ Total = 30240

7. (a) (i)
$$P(A \cup B) \le 1$$
 and $P(A \cap B) = P(A) + P(B) - P(A \cup B)$
 $\ge 0.7 + 0.8 - 1$
 $= 0.5$

(i)
$$P(A' \cup B) + P(A) - P(A \cap B) = 1$$
 (Use Venn Diagram)
 $P(A \cap B) = 0.85 + 0.7 - 1 = 0.55$
 $P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{0.55}{0.8} = \frac{11}{16} = 0.6875$

A & B are not independent as $P(A|B) \neq P(A)$. or $P(A \cap B) \neq P(A).P(B)$

(ii) If $P(A \cap B) = 0.5$, then $P(A \cup B) = 1$, event A & event B are exhaustive.

(b) Total no. of points =
$$1+2+3+...+9+10=55$$
 OR ${}^{11}C_2=55$
Prob. = ${}^{11}C_1 \times \frac{10}{55} \times \frac{9}{54} \times \frac{8}{53} = \frac{8}{159} \approx 0.0503$ OR ${}^{11}C_1 \times \frac{{}^{10}C_3}{55}C_2 = \frac{8}{159}$

8 i) Let X = number of hot drinks sold in five minutes. Let Y = number of cold drinks sold in five minutes

$$X \square Po(2)$$
 $Y \square Po(2.5)$
 $X + Y \square Po(4.5)$
 $P(X + Y > 4) = 1 - P(X + Y \le 4)$
 $= 1 - 0.532103...$
 $= 0.467896... = 0.468$

ii) Required probability =
$$P(X = 0/X + Y \le 4)$$

= $\frac{P(X = 0 \cap X + Y \le 4)}{P(X + Y \le 4)}$
= $\frac{P(X = 0)P(Y \le 4)}{P(X + Y \le 4)} = \frac{0.13534 \times 0.89118}{0.53210} = 0.227$

(iii) Let W= number of periods with more than 4 drinks sold out of the twenty periods. $W \square B(20,0.46790)$

 \Rightarrow least n = 11

$$P(W \ge n) < 0.4$$

 $1 - P(W \le n - 1) < 0.4 \implies P(W \le n - 1) > 0.6$
From GC: $P(W \le 9) = 0.527 < 0.6$
 $P(W \le 10) = 0.696 > 0.6$
Least $n-1 = 10 \implies leas$

(iv) Number of hot drinks sold in 30 minutes = $H \sim Po(12)$

Number of cold drinks sold in 30 minutes = $C \sim Po(15)$

Since both
$$\lambda > 10$$
, $H \sim N(12,12)$ and $C \sim N(15,15)$

$$H-C \sim N(-3,27)$$

 $P(H-C>0) = P(H-C>0.5) = 0.25029... = 0.250$

9 (a)
$$n = 16$$
 $x = \frac{2848}{16} = 178$,

$$s^{2} = \frac{1}{15} \left[509884 - \frac{2848^{2}}{16} \right] = 196, \quad s = 14$$

Hypothesis: $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$

As σ^2 is unknown, *n* is small, conduct a 2-tailed *t* -test,

assuming $X \square$ Normal Distribution $N(\mu, \sigma^2)$, test statistics: $T = \frac{X - \mu_0}{\frac{S}{\sqrt{16}}} \square t(15)$

At 5% significance level, do not reject H_0 if -2.131 < t < 2.131.

$$-2.131 < \frac{178 - \mu_0}{\frac{14}{\sqrt{16}}} < 2.131$$

$$-7.4585 < 178 - \mu_0 < 7.4585$$

$$170.5415 < \mu_0 < 185.4585 \implies 171 < \mu_0 < 185$$

(b) Combine sample:
$$n = 16 + 36 = 52$$
, $120 = \frac{1}{36} \left[\sum c^2 - \frac{6660^2}{36} \right] \Rightarrow \sum c^2 = 1236420$
 $\sum y = 2848 + 185(36) = 9508$
and $\sum y^2 = 509884 + 1236420 = 1746304$.

Unbiased estimate for
$$\mu$$
 is = $\overline{y} = \frac{9508}{52} = 182.8461538$

Unbiased estimate for
$$\sigma^2$$
 is = $s^2 = \frac{1}{51} \left[1746304 - \frac{9508^2}{52} \right] = 152.9954751$

Hypothesis:
$$H_0: \mu = 180$$
 against $H_1: \mu > 180$

As σ^2 is unknown, *n* is large, conduct a 1-tailed *z* -test,

test statistics:
$$Z = \frac{\overline{X} - 180}{\frac{s}{\sqrt{52}}} \square N(0,1)$$
 [by CLT]

From GC,
$$z = 1.65928407$$
, $p = 0.04852928$

$$p - value = P(Z > 1.65928407)$$
 when $\mu = 180)$

- = prob that the sample mean cholesterol attains a value of more than 182.8461538 if the population mean cholesterol content in eggs is 180
- Or The *p*-value is the lowest level of significance for which the null hypothesis of mean cholesterol level being 180, will be rejected.
- Or The p-value is the probability of obtaining a test statistic more than 1.659, assuming that H_0 is true.
- 10 Let L = waiting time of a patient at Lee's Clinic and H = waiting time of a patient at Hope Clinic.

i) Let
$$X = \frac{L_1 + L_2 + L_3 + L_4 + L_5}{5} \square N\left(25, \frac{8^2}{5}\right)$$

 $X - H \square N\left(25 - 37, \frac{8^2}{5} + 4^2\right) = N(-12, 28.8)$
Required probability = $P(|X - H| \ge 5)$

$$= P(X - H \ge 5) + P(X - H \le -5)$$
$$= 0.000768 + 0.90395$$
$$= 0.905 \text{ (to 3 sf)}$$

Assumption: the waiting times of all patients are independent.

ii) Let Y = number of patients with waiting time more than 25 minutes $Y \square B(n,0.5)$

Since
$$n > 40$$
, $\therefore np > 5$ and $n(1-p) > 5$

$$\Rightarrow Y \square N(0.5n, 0.25n)$$
 approximately.

$$P(Y \le 40) < 0.95$$

$$\Rightarrow P(Y \le 40.5) < 0.95$$

$$\Rightarrow P\left(Z \le \frac{40.5 - 0.5n}{0.5\sqrt{n}}\right) < 0.95$$

$$\Rightarrow \frac{40.5 - 0.5n}{0.5\sqrt{n}} < 1.64485$$

$$\Rightarrow$$
 0.5 n + 1.64485 $\left(0.5\sqrt{n}\right)$ - 40.5 > 0

By GC,
$$n > 67.487$$
. Least $n = 68$

iii) Let W = number of patients treated for influenza in a sample of 20.

$$W \square B(20,0.2)$$

$$E(W) = 20(0.2) = 4$$
 and $Var(W) = 20(0.2)(0.8) = 3.2$

Since n = 60, by CLT,
$$\overline{W} \square N\left(4, \frac{3.2}{60}\right)$$

$$P(\overline{W} > 3.5) = 0.9848... = 0.985$$

- iv) Normal model is not likely to be appropriate as the waiting times of the combined group of patients may follow a bi-modal distribution.
- 11. (i) $\overline{\theta} = 45$, $\overline{T} = \frac{80+t}{7}$ lies on the regression line.

$$\frac{80+t}{7} = 35.857 - 0.51429(45) \Rightarrow t = 8.998 \approx 9 \text{ (nearest integer)}$$

(ii) When $\theta = 70$, T = -0.143.

Reason 1: this estimate is not realistic since the time taken cannot be negative.

Reason 2: scatter diagram suggests a curved relationship rather than a straight line.

(iii)
$$\theta(T-a) = b \Rightarrow T = a + \frac{b}{\theta}$$

Regression line of T on
$$\frac{1}{\theta}$$
: $T = -8.1556 + \frac{804.86}{\theta}$

$$30 = -8.1556 + \frac{804.86}{\theta} \Rightarrow \theta = 21.1^{\circ}C$$

[Note: the wrong regression line gives 21.2 $\,^{\circ}C$]