

Section A: Pure Mathematics

No.		Suggested Solution	Remarks for Student
(i)	32 m		Note that we need
			$16 - \frac{1}{2}h \ge 0$
(ii)	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\sqrt{16 - \frac{1}{2}h}}{10}$	$\Rightarrow \int 10 \left(16 - \frac{1}{2}h\right)^{-\frac{1}{2}} \mathrm{d}h = \int \mathrm{d}t$	
		$\Rightarrow \frac{20}{\left(-\frac{1}{2}\right)} \sqrt{16 - \frac{1}{2}h} = t + c$	
	$\therefore t = b - 40\sqrt{16}$	$\overline{b-\frac{1}{2}h}$ where $b=-c$	
	h = 0 when $t =$	$0 \Rightarrow b = 160$	
	Thus, $t = 160 - $	$40\sqrt{16-\frac{1}{2}h}$	
	Half its maxim	um height, that is, $h = 16$	
	we have $t = 160$	$0 - 40\sqrt{16 - \frac{1}{2}(16)} = 160 - 40\sqrt{8} \approx 46.9$ years	

No.	Suggested Solution	Remarks for Student
	$L: \underline{r} = \begin{pmatrix} 1 \\ -2 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 3 \\ -6 \end{pmatrix}, \ \lambda \in \mathbb{R}$	
(i)	Acute angle = $\cos^{-1} \left \begin{array}{c} 2 \\ 3 \\ -6 \end{array} \right \left \begin{array}{c} 1 \\ 0 \\ 0 \\ \end{array} \right = \cos^{-1} \frac{2}{7} = 73.4^{\circ}$	
(ii)	$\overrightarrow{OP} = \begin{pmatrix} 2\\5\\-6 \end{pmatrix}$	
	Any point, <i>R</i> , on <i>L</i> has position vector, $\overrightarrow{OR} = \begin{pmatrix} 1+2\lambda \\ -2+3\lambda \\ -4-6\lambda \end{pmatrix} \text{ for some } \lambda \in \mathbb{R}.$	
	$\left \overrightarrow{PR} \right = \sqrt{33} \implies \begin{vmatrix} 1+2\lambda-2\\ -2+3\lambda-5\\ -4-6\lambda+6 \end{vmatrix} = \sqrt{33}$ $\Rightarrow \sqrt{(2\lambda-1)^2 + (3\lambda-7)^2 + (2-6\lambda)^2} = \sqrt{33}$ $\Rightarrow 4\lambda^2 - 4\lambda + 1 + 9\lambda^2 - 42\lambda + 49 + 4 - 24\lambda + 36\lambda^2 = 33$	
	$\Rightarrow 49\lambda^{2} - 70\lambda + 21 = 0$ $\Rightarrow 7\lambda^{2} - 10\lambda + 3 = 0$ $\Rightarrow (7\lambda - 3)(\lambda - 1) = 0$ $\Rightarrow \lambda = \frac{3}{7} \text{or} \lambda = 1$	

	$\overrightarrow{OR} = \begin{pmatrix} 1+2\left(\frac{3}{7}\right) \\ -2+3\left(\frac{3}{7}\right) \\ -4-6\left(\frac{3}{7}\right) \end{pmatrix} \text{or} \overrightarrow{OR} = \begin{pmatrix} 1+2 \\ -2+3 \\ -4-6 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ -10 \end{pmatrix}$ $= \begin{pmatrix} \frac{13}{7} \\ -\frac{5}{7} \\ -\frac{46}{7} \end{pmatrix}$
	$\overrightarrow{OR'} = \frac{1}{2} \begin{bmatrix} 3 \\ 1 \\ -10 \end{bmatrix} + \begin{bmatrix} \frac{13}{7} \\ -\frac{5}{7} \\ -\frac{46}{7} \end{bmatrix} = \begin{bmatrix} \frac{17}{7} \\ \frac{1}{7} \\ -\frac{58}{7} \end{bmatrix}$
(iii)	$ \begin{pmatrix} 2-1\\5+2\\-6+4 \end{pmatrix} \times \begin{pmatrix} 2\\3\\-6 \end{pmatrix} = \begin{pmatrix} 1\\7\\-2 \end{pmatrix} \times \begin{pmatrix} 2\\3\\-6 \end{pmatrix} = \begin{pmatrix} -36\\2\\-11 \end{pmatrix} $ Required plane is $-36x + 2y - 11z = -36(2) + 2(5) - 11(-6) = 4.$

No.	Suggested Solution	Remarks for Student
	$f: x \mapsto \frac{1}{1-x^2}, x \in \mathbb{R}, x > 1$	
(a)(i)	Method 1:	
	f'(x) = $\frac{2x}{(1-x^2)^2} > 0$ for x > 1	
	Thus, f is an increasing function for $x > 1$. Thus f has an inverse.	
	Method 2:	
	Sketch graph of f and explain using horizontal line.	
(ii)	Let $y = \frac{1}{1-x^2} \implies \frac{1}{y} = 1-x^2$	
	$\Rightarrow x^{2} = 1 - \frac{1}{y}$ $\Rightarrow x = \sqrt{1 - \frac{1}{y}} \because x > 1$ $f^{-1}(x) = \sqrt{1 - \frac{1}{x}}$ $D_{f^{-1}} = R_{f} = (-\infty, 0)$	
	$D_{f^{-1}} = R_f = (-\infty, 0)$	
(b)	$g: x \mapsto \frac{2+x}{1-x^2}, x \in \mathbb{R}, x \neq \pm 1$	
	Let $y = \frac{2+x}{1-x^2} \implies y(1-x^2) = 2+x$ $\implies yx^2 + x + (2-y) = 0$	
	For the equation to be defined, discriminate ≥ 0 ,	
	thus, $1-4y(2-y) \ge 0$ $4y^2 - 8y + 1 \ge 0$	
	$4y^{2} - 3y + 1 \ge 0$ $4(y^{2} - 2y + 1) - 3 \ge 0$	
	$4(y-1)^2 - 3 \ge 0$	
	$(2y-2-\sqrt{3})(2y-2+\sqrt{3}) \ge 0$	
	$y \ge \frac{2+\sqrt{3}}{2} \text{ or } y \le \frac{2-\sqrt{3}}{2}$	

No.	Suggested Solution	Remarks for Student
(a)	Let P_n be the statement	
	$\sum_{r=1}^{n} r(r+2)(r+5) = \frac{1}{12}n(n+1)(3n^2+31n+74) \text{ for } n \in \mathbb{Z}^+.$	
	For $n = 1$,	
	$LHS = \sum_{r=1}^{1} r(r+2)(r+5) = 1 \times 3 \times 6 = 18$	
	$RHS = \frac{1}{12}(1)(1+1)(3+31+74) = \frac{216}{12} = 18 = LHS$	
	Therefore, P_1 is true.	
	Assume P_k is true for some $k \in \mathbb{Z}^+$, i.e.	
	$\sum_{r=1}^{k} r(r+2)(r+5) = \frac{1}{12}k(k+1)(3k^2+31k+74)$	
	We need to show P_{k+1} is true, i.e.	
	$\sum_{r=1}^{k+1} r(r+2)(r+5) = \frac{1}{12}(k+1)[(k+1)+1](3(k+1)^2+31(k+1)+74)$	
	For $n = k + 1$,	

	k+1	
	$\sum_{r=1}^{k+1} r(r+2)(r+5)$	
	$=\sum_{r=1}^{k} r(r+2)(r+5) + (k+1)(k+1+2)(k+1+5)$	
	$=\frac{1}{12}k(k+1)(3k^{2}+31k+74)+(k+1)(k+3)(k+6)$	
	$=\frac{1}{12}(k+1)\left(k\left(3k^{2}+31k+74\right)+12(k+3)(k+6)\right)$	
	$=\frac{1}{12}(k+1)(3k^3+31k^2+74k+12k^2+108k+216)$	
	$=\frac{1}{12}(k+1)(3k^3+43k^2+182k+216)$	
	$=\frac{1}{12}(k+1)(k+2)(3k^2+37k+108)$	
	$=\frac{1}{12}(k+1)(k+2)\left(3(k^2+2k+1)+31(k+1)+74\right)$	
	$=\frac{1}{12}(k+1)[(k+1)+1](3(k+1)^{2}+31(k+1)+74)$	
	Therefore $P_k \Rightarrow P_{k+1}$ is true.	
	Since P_1 is also true, P_n is true for $n \in \mathbb{Z}^+$ by Mathematical Induction.	
(b)(i)	$\frac{2}{4r^2 + 8r + 3} = \frac{2}{(2r+1)(2r+3)} = \frac{1}{2r+1} - \frac{1}{2r+3}$	
(ii)	$\sum_{r=1}^{n} \frac{2}{4r^2 + 8r + 3} = \sum_{r=1}^{n} \left(\frac{1}{2r + 1} - \frac{1}{2r + 3} \right)$ $= \frac{1}{3} - \frac{1}{5}$ $+ \frac{1}{5} - \frac{1}{7}$ $+ \frac{1}{7} - \frac{1}{9}$	
	$ + \frac{1}{2n-1} - \frac{1}{2n+1} + \frac{1}{2n+1} - \frac{1}{2n+3} = \frac{1}{3} - \frac{1}{2n+3} $	

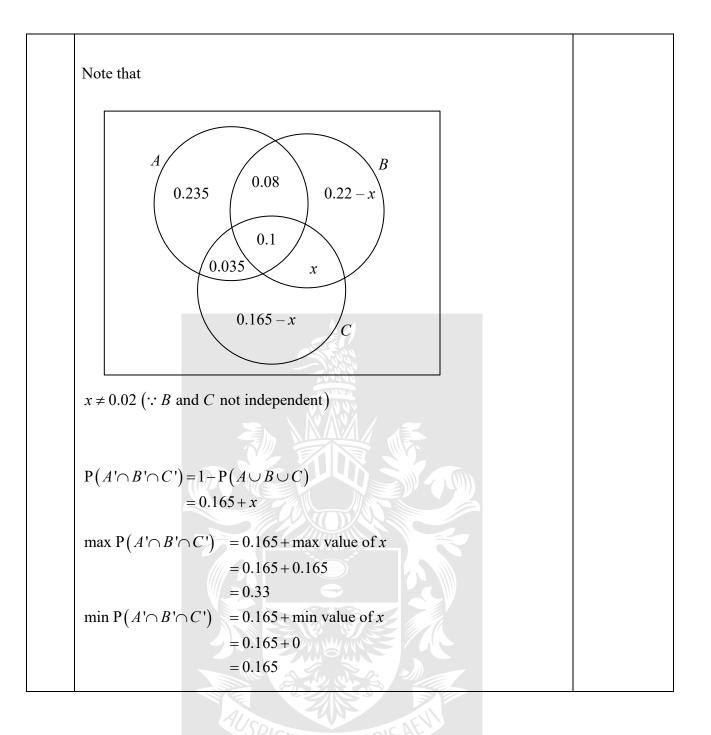
(iii)
$$\left| \frac{1}{3} - \frac{1}{2n+3} - \frac{1}{3} \right| < 10^{-3} \implies \frac{1}{2n+3} < 10^{-3} \implies n > 498.5$$

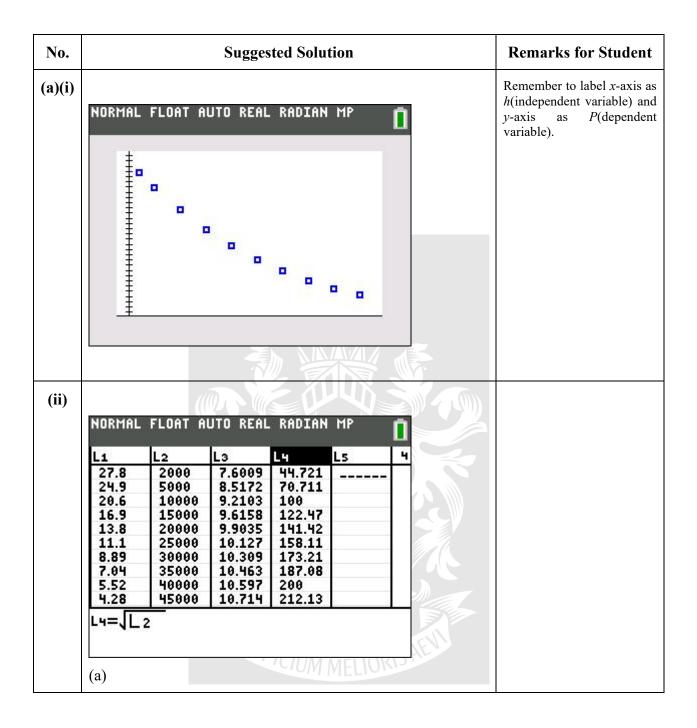
smallest $n = 499$

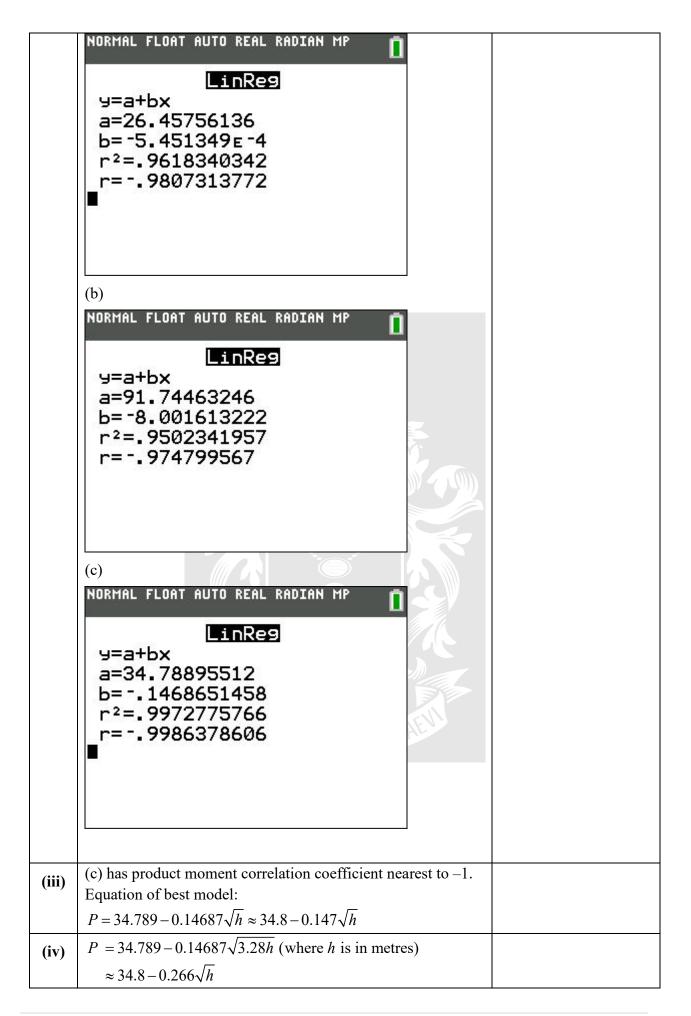
Section B: Statistics

No.	Suggested Solution	Remarks for Student
(i)	Not possible to obtain the sampling frame, that is, not possible to get the list of all customers, with their age, who patronize the supermarket.	
(ii)	Assume manager wants to get opinions of 10 customers from each of the following groups (by ages)	
	Children: Below 12 years old,	
	Teenagers: 12 to 18 years old,	
	Young Adult: 18 to 35 years old,	
	Mature Adult: 35 to 50 years old,	
	Above 50 years old.	
	Approach the first 10 customers who are willing to provide their opinions using a questionnaire.	
(iii)	As mentioned in (ii), we are approaching the first 10 customers who are willing to provide their opinions. We will not obtain opinions of those who are not as vocal.	

No.	Suggested Solution	Remarks for Student
(i)	Let X be the number of red sweets in a small packet of 10	
	sweets. $X \sim B(10, 0.25)$	
	$P(X \ge 4) = 1 - P(X \le 3) = 1 - 0.775875 \approx 0.224$	
(ii)	Let X be the number of red sweets in a large packet of 100 sweets.	
	$Y \sim B(100, 0.25)$	
	Since $n = 100$ is large, and $np = 25 > 5$ and $n(1-p) = 75 > 5$,	Be sure to check the conditions and state the
	$Y \sim N(25, 18.75)$ approximately.	approximate distribution used.
	$P(Y \ge 30) = P(Y \ge 29.5) $ by continuity corrections = 0.14935 \approx 0.149	
(iii)	For 9740 syllabus: Let W be the number large packets, out of 15, containing at least 30 red sweets.	For 9740 syllabus: Exam report suggests that students need to use
	$W \sim B(15, 0.14935)$	answer from (ii), as the
	$P(W \le 3) = 0.824655 \approx 0.825$	only answer given is 0.825.
	For 9758 syllabus:	
	Without using approximation for $P(Y \ge 30)$,	
	$W \sim B(15, P(Y \ge 30))$, that is, $W \sim B(15, 0.14954)$	
	$P(W \le 3) = 0.82407 \approx 0.824$	


No.	Suggested Solution	Remarks for Student
(i)	Number of errors per page are assumed to remain constant uniformly.	
	Errors occure independently between pages of the newspaper.	
	Let <i>X</i> be the number of errors on one page. $X \sim Po(1.3)$	
(ii)	$Y = X_1 + X_2 + X_3 + X_4 + X_5 + X_6 \sim \text{Po}(7.8)$ $P(Y > 10) = 1 - P(Y \le 10) = 1 - 0.83523 \approx 0.165$	
(iii)	$W = X_1 + X_2 + + X_n \sim Po(1.3n)$ $P(W < 2) < 0.05$ $P(W = 0) + P(W = 1) < 0.05$ $e^{-1.3n} + 1.3ne^{-1.3n} < 0.05$ $e^{-1.3n} (1+1.3n) - 0.05 < 0 \dots (1)$ Solving (1) using GC graphically or table of values,	To avoid careless mistake, we should also use the original inequality, P(W < 2) < 0.05, to check the answer.
	least $n = 4$	




No.	Suggested Solution	Remarks for Student
	Let <i>X</i> be the mass of a pineapple in kg.	
	$X \sim N(\mu, \sigma^2)$	
	unbiased estimate of μ , $\overline{x} = 0.8825$	
	unbiased estimate of σ^2 , $s^2 = 0.074785^2 \approx 0.00559$	
	Null hypothesis, $H_0: \mu = 0.9$	
	Alternative hypothesis, $H_1: \mu < 0.9$	
	Perform an one-tailed test at 10% significance level.	
	Under H ₀ , $\overline{X} \sim N\left(0.9, \frac{0.074785^2}{8}\right)$ approximately.	
	p -value = P($\overline{X} < 0.8825$) = 0.265 > 0.1.	
	Since p -value = $0.265 > 0.1$, we do not reject H ₀ and thus we	
	do not have sufficient evidence at 10% level of significance to	
	doubt the claim of the stall owner that the mean mass of the	
	pineapples is at least 0.9kg.	

No.	Suggested Solution	Remarks for Student
	$P(A) = 0.45, P(B) = 0.4, P(C) = 0.3, P(A \cap B \cap C) = 0.1.$ A and B are independent. A and C are independent.	
(i)	P(B A) = P(B) = 0.4 since A and B are independent.	
(ii)	$P(A) = 0.45, P(B) = 0.4, P(C) = 0.3, P(A \cap B \cap C) = 0.1.$	
	A and B are independent, so $P(A \cap B) = P(A)P(B) = 0.18$. A and C are independent, so $P(A \cap C) = P(A)P(C) = 0.135$. B and C are independent, so $P(B \cap C) = P(B)P(C) = 0.12$. Using Venn diagram, $P(A' \cap B' \cap C') = 1 - P(A \cup B \cup C) = 1 - 0.815 = 0.185$ $A = 0.235 \qquad 0.08 \qquad 0.2 \qquad 0.145 \qquad 0.2 \qquad 0.035 \qquad 0.02 \qquad 0.145 \qquad 0.145$	
(iii)	$P(A) = 0.45, P(B) = 0.4, P(C) = 0.3, P(A \cap B \cap C) = 0.1.$ A and B are independent, so $P(A \cap B) = P(A)P(B) = 0.18.$	Use venn diagram to visualize $P(A' \cap B' \cap C')$
	A and C are independent, so $P(A \cap C) = P(A)P(C) = 0.135$.	$=1-\mathbf{P}(A\cup B\cup C)$
	$P(A' \cap B' \cap C') = 1 - P(A \cup B \cup C)$	

No.	Suggested Solution	Remarks for Student
	Available letters	
	1C, 2A, 2B, 1G, 1E, 1S	
	Total: 8 letters.	
(i)	Total number of arrangements $=\frac{8!}{2!2!}=10080$	
(ii)	10080 - 1 = 10079	
(iii)	6! = 720	
(iv)	By Complement Principle, number of different arrangements that can be made with no two adjacent letters the same is = (i) - (iii) - Number of ways with only "AA" adjacent and "BB"	
	not adjacent – Number of ways with only "BB" adjacent and "AA" not adjacent	
	$= 10080 - 720 - 2[5!^{6}C_{2}] = 5760$	

No.	Suggested Solution	Remarks for Student
	Let <i>X</i> be the mass of an apple in grams. $X \sim N(300, 20^2)$	
	Let <i>Y</i> be the mass of a pear in grams. $Y \sim N(200, 15^2)$	
(i)	$X_1 + X_2 + \dots X_5 \sim N(1500, 2000)$	
	$P(X_1 + X_2 + \dots X_5 > 1600) = 0.0127$	
(ii)	$Y_1 + Y_2 + \dots Y_8 \sim N(1600, 1800)$	
	$(X_1 + X_2 +X_5) - (Y_1 + Y_2 +Y_8) \sim N(-100, 3800)$	
	$P(X_1 + X_2 +X_5 > Y_1 + Y_2 +Y)$	
	$= P((X_1 + X_2 + \dots X_5) - (Y_1 + Y_2 + \dots Y_8) > 0)$	
	= 0.0524	
(iii)	$0.85(X_1 + X_2 +X_5) \sim N(1275, 1445)$	
	$0.9(Y_1 + Y_2 +Y_8) \sim N(1440, 1458)$	
	$0.85(X_1 + X_2 + \dots X_5) + 0.9(Y_1 + Y_2 + \dots Y_8) \sim N(2715, 2903)$	
	$P(0 < 0.85(X_1 + X_2 +X_5) + 0.9(Y_1 + Y_2 +Y_8) < 2750)$ = 0.742	

