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H2 Topic 9 

Oscillations

 

Do you know why that most grandfather clocks, invented in 1656, will have a 
pendulum of length ≈1m while smaller versions have a pendulum of length ≈25cm? 
Do you know that these clocks will ‘slow down’ on top of Mount Everest? 

These clocks were the most accurate time keepers until quartz was invented in 
1927! 

What is the period of these clocks (1.0m and 0.25m)? 

A 0.5 s  B 1.0 s  C 2.0 s  D  1 minute 
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Content 
 
• Simple harmonic motion  
• Energy in simple harmonic motion  
• Damped and forced oscillations: Resonance  
 
 
 
Learning Outcomes  
 
Candidates should be able to:  
 
(a)  describe simple examples of free oscillations.  
(b)  investigate the motion of an oscillator using experimental and graphical methods.  
(c)  understand and use the terms amplitude, period, frequency, angular frequency and phase 

difference and express the period in terms of both frequency and angular frequency.  
(d)  recognise and use the equation xa 2ω−= as the defining equation of simple harmonic 
 motion.  
(e)  recall and use txx ωsin0= as a solution to the equation xa 2ω−= .  
(f)  recognise and use  
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(g)  describe, with graphical illustrations, the changes in displacement, velocity and acceleration 
during simple harmonic motion.  

(h)  describe the interchange between kinetic and potential energy during simple harmonic 
 motion.  
(i)  describe practical examples of damped oscillations with particular reference to the effects of 

the degree of damping and the importance of critical damping in cases such as a car 
suspension system.  

(j)  describe practical examples of forced oscillations and resonance.  
(k)  describe graphically how the amplitude of a forced oscillation changes with frequency near to 

the natural frequency of the system, and understand qualitatively the factors which determine 
the frequency response and sharpness of the resonance.  

(l)  show an appreciation that there are some circumstances in which resonance is useful and 
other circumstances in which resonance should be avoided.   

 
 
 
 
 
References:  
 
1 Advanced Level Physics by Loo Kwok Wai 
2 College Physics by Young and Geller 
3 Physics for Scientist and Engineers (5th Edition) by Serway  
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1 Introduction 
(a)  describe simple examples of free oscillations. 

 
An oscillation is a periodic motion of an object about a certain mean equilibrium position with a 

continuous interchange of kinetic energy and potential energy. 

Periodic (or harmonic) motion refers to any motion that repeats itself in equal intervals of time.  

 
Examples: vibration of tuning fork, boat bobbing at anchor, a child playing on a swing,  
                    bells, pendulum of a grandfather clock, diaphragms in telephones and   
                    speaker systems and surging pistons in engines of cars.  
 
When an object is displaced from its fixed equilibrium position and is free to oscillate, it will oscillate 

about this position with the natural frequency of the system. (We will go into more details of this 

natural frequency with a simple pendulum case study later.) 

 
The object will oscillate forever under free oscillations as energy is conserved and quantities such 

as amplitude and period remain constant. 

 
In real life, dissipative forces like air resistance and friction will cause the oscillations to fade with time, 

as we observed in our many practical exercises on oscillations. These oscillations are known as 

damped oscillations. Damped oscillations occur when there is a continuous transfer of energy to the 

surroundings such that the energy in the system decreases with time, hence the amplitude of the 

motion progressively decreases with time. 

 
Forced oscillations are caused by continual input of energy by external source to an oscillating 

system to compensate the loss due to damping in order to maintain the amplitude of the oscillation. 
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1.1 Describing Oscillations 
(c)  understand and use the terms amplitude, period, frequency, angular frequency and 

phase difference and express the period in terms of both frequency and angular 
frequency.  

 
Consider displacement with time of a spring-mass oscillating in frictionless environment: 
 

 
a. Equilibrium position (or neutral position) is the position at which no net force acts on 

the oscillating mass. 
 

b. Displacement (x) is the distance of the oscillating mass from its equilibrium position at 
any instant in a stated direction. 

 
c. Amplitude (xo) is the maximum displacement of the oscillating mass from the equilibrium 

position in either direction. 
 

d. Period (T) is the time taken for one complete oscillation.  Unit: second. 
 

e. Frequency (f) is the number of complete to-and-fro cycles per unit time made by the 
oscillating object.    Unit: Hertz.   1 Hz is equal to one cycle per second. 

 
f. Angular frequency (ω) of an oscillation is frequency × 2π. It is the angle in radians by 

which the phase of the motion changes per unit time. 
Unit:  radian per  second (rad s−1). 

  
g.   Phase is an angle in either degrees or radians which gives a measure of the fraction of a 

cycle that has been completed by an oscillating particle or by a wave. 
 

h.    Phase difference is a measure of how much one wave is out of step with another. It is 
measured in either degrees or radians. 

 
i.  In-phrase, Out of Phase, Antiphase 

 
 In phase: phase difference is zero. 
  

Out of phase: phase difference is not zero. 
  

Antiphase: phase difference is 180 degrees or π radians. 
 
  

Time 

PERIOD  T 

x 

x = 0  

x > 0 

  x < 0 

Amplitude Xo 
Equilibrium position 

Amplitude Xo   
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Examples of Phase Difference 

 
Phase difference of π/2, (∆t = ¼T)  

If v = v0 cos kt, then v’ = v0’cos (kt − π/2) = −v0’sin kt 
   
        

 
Phase difference of π, completely out of phase, (∆t = ½T) 

If v = v0 sin kt, then v’ = v0
’ sin (kt − π) = − v0

’ sin kt 
 

Example 1 
 
A man standing at the dock was observing the bobbing motion of a speedboat on the seawater just 
below the dock.  He estimated that the boat could reach two extreme positions which were 3.0 m and 
4.0 m below the dock surface respectively.  He also counted that the boat would bob on average 30 
times in 15 seconds.  Assume that the speedboat was executing free oscillation, determine its 
(a) amplitude, (b) period, (c) frequency, (d) vertical distance between the equilibrium position and the 
dock surface and (e) the angular frequency. 
 
Solution 
(a) x0 = ½ (4.0 – 3.0) = ½ (1.0) = 0.50 m                            
 

(b) T = 
30
15

 = 0.50 s 

(c) f = ==
50.0
11

T
 2.0 Hz                               

(d)   vertical distance = ½ (4.0 + 3.0) = 3.5 m 
 
(e)     ω =  2 π f = 2 π f = 2 π (2.00) = 4.00 π  = 12.6 rads-1 
 

 

v 

v’ 

v’ 

v 
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Example 2 
A pendulum takes 31.7 seconds to complete 25 oscillations, if another similar pendulum is 1.70 
seconds behind the first, what is the phase difference between the pendulums? 
 
Solution 
31.7 ÷ 25 = 1.268 = 1.27 s 
The period is 1.27 s 
 
Since the period of the pendulum is 1.27s, the actual time difference in the oscillation is ∆t= 1.70 − 
1.268 = 0.432 s 
φ = 2π∆t/T = 2.14 rad 
 

 

Example 3 
The velocity time graph of the oscillating cart is shown below. Determine the 
(a) Period  (b) Frequency (c) Angular Frequency 
 

  
Solution 
(a)  2.5 waves in 1.6 seconds, therefore period is 0.64 s 
(b) f = 1/T = 1.56 Hz 
(c) ω = 2πf = 9.82 rad s-1 
 
 
Food for thought 
Is circular motion a type of oscillatory motion? Why? Can ω be negative? Why?  
Is Angular frequency = Angular velocity? 
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2 Dynamics of Simple Harmonic Motion (SHM) 
(d)  recognise and use the equation xa 2ω−= as the defining equation of simple harmonic 
 motion.  
(e)  recall and use txx ωsin0= as a solution to the equation xa 2ω−= .  
 
The example of the cart oscillating due to the spring is a classic case of simple harmonic motion. 
SHM is the simplest form of oscillatory motion. For SHM to take place, we assume that the objects are 
in free oscillation (no energy lost through resistive forces) and that there is a restoring force (i.e. 
Hooke’s law) to bring the object back to the fixed (equilibrium) position O. 

 
Case 1 
The spring is compressed, the 
displacement is to the right while the 
spring exerts a pushing force to the 
left 
 
Case 2 
The spring is stretched, the 
displacement is to the left while the 
spring exerts a pulling force to the 
right 
 
Case 3 
The spring is in equilibrium position, 
there is no net force (but the cart can 
be moving) 
 
As mentioned earlier, the direction of 
the force (or acceleration) is in 
opposite direction to the displacement, 

hence x
dt

xda 2
2

2

ω−== . 

 
 
 

 
Enrichment (Not required to solve ODE for Exams) 

Note: Equations of the form x
dt

xd 2
2

2

ω−=  are known as differential equations. Since we 

differentiate x with respect to time twice, this is a second order ordinary differential equation (ODE). 
Mathematicians devised many methods in solving ODE which we will not be going through in details 
here. But the sine/cosine like behaviour of the harmonic oscillation gives us a hint that the solution to 
x may be related to sine/cosine functions. 
 
In order to find the equation of motion for simple harmonic motion, we will need to look for a function 

x(t) that satisfy the differentiate equation of the form x
dt

xd 2
2

2

ω−= . Just like solving for the equation 

of motions for kinematics, we look at the displacement-time and velocity-time graph for inspirations. 
We could use the sine wave like displacement-time and velocity-time graph of the SHM to help us 
understand the problem better. 
 
As smart physics students, let’s assume that the function x has the general form 

BtAx sin=  
where A and B are constants to be solved. 
 

X2 

Equilibrium 
Position 

F2 

X1 

F1 

F3 = 0 

X3 = 0 
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Enrichment (Not required to solve ODE for Exams) 
 
Given that the angular frequency of the system is ω=2π/T or 2π = Tω = BT, we can deduce that 
constant B = ω since the sine wave need to make one complete wave for every time interval T. We 
get 

tAx ωsin=  
If we let the maximum displacement of the oscillation be x0, then A = x0 since 1sin1 ≤≤− tω . 
We get 

txx ωsin0=  
This is the general solution for simple harmonic oscillation. The displacement of the object in SHM is 
given by the expression txx ωsin0= so we will know where our object is at any given point of time. 

Let’s verify that the expression txx ωsin0=  satisfies the equation a= x
dt

xd 2
2

2

ω−=  

tx
dt
dx ωω cos0=  

xtxtx
dt

xd 2
0

22
02

2

)sin(sin ωωωωω −=−=−=  (Verified) 

 

IMPORTANT! 
Therefore, the general equation defining simple harmonic motion is given by 

xa 2ω−=  
 
Food for Thought 
If a body’s motion is given by a = ω2x, is the body undergoing SHM? Why? 

                                                          

DEFINITION! 
Simple Harmonic motion (SHM) is defined as oscillatory motion of a particle whose acceleration 
is directly proportional to its displacement from the equilibrium position and this acceleration is always 
in opposite direction to its displacement. 
 

Solution to SHM 
txx ωsin0=  is a solution to xa 2ω−=  

This equation is in the formula list 
 

Food for Thought 
If we start off with txx ωcos0=  instead, we could obtain an alternative solution to the general 

equation of SHM, xa 2ω−= . Why? What is the difference between txx ωcos0=  and 

txx ωsin0= ? (Hint: Think of the starting position x of the object in SHM, if it starts at equilibrium 
position versus starting at maximum displacement) 
 
The general solution for  xa 2ω−=  is )sin(0 φω += txx , what is φ denoted here? 
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2.1 Velocity of SHM 

(f)  recognise and use )(,cos 22
00 xxvtvv −±== ωω  

 
Since we have shown that txx ωsin0= , the velocity of the object in simple harmonic motion is 
simply given by the expression 
 
Therefore the velocity of the object at a given time t is 

tvtx
dt
dxv ωωω coscos 00 === , where ω00 xv =  

tvv ωcos0=  
This equation is in the formula list 
 
Food for Thought 
In circular motion, the linear velocity is given by v = r ω, can you draw any similarities to the 
expression of v0 above? 
 
To get rid of the trigonometric functions, we can try to square the functions of x and v, 

txv ωω 222
0

2 cos=  --- Eqn (1) 

txx ω22
0

2 sin= , 

txx ωωω 222
0

22 sin=  --- Eqn (2) 
Adding Eqn (1) and Eqn (2) together, 

txtxxv ωωωωω 222
0

222
0

222 cossin +=+  
22

0
222 ωω xxv =+  

)( 22
0

22 xxv −= ω  

)( 22
0 xxv −±= ω  

 

Therefore the velocity of the object at position x is given by )( 22
0 xxv −±= ω  

This equation is in the formula list 
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2.2 Graphical Representation 
(b)  investigate the motion of an oscillator using experimental and graphical methods. 

(g)  describe, with graphical illustrations, the changes in displacement, velocity and 
acceleration during simple harmonic motion.   

 
 

Case 1:  Mass initially at equilibrium position, i.e. when t = 0, x = 0  
The corresponding displacement-time graph, velocity-time graph and acceleration-time graph are 
as shown. 

 
1) Displacement-Time Graph 

 
x = x0 sin ωt 

    

 
 
 
 
 
 
 
 
 
 

2) Velocity-Time Graph 
 

 v = ωx0 cos ωt 
   

 

(v = 
d
d
x
t

) 

 
 
 
 
 
 
 
 
 
 

3) Acceleration-Time Graph 
 

 a = – ω2x0 sin ωt 
   

 

(a = 
t
v

d
d

 = 
d
d

2

2
x

t
) 

 
 
 
 
 
 
 
 
 
 

 

x 
x0 

- x0 

t 

v 
ωx0 

- ωx0 

t 

a 
ω2x0 

-ω2x0 

t 
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1) Displacement-Time Graph 

 
x = x0 cos ωt 

 
 
 
 
 
 
 
 

 
 
 
 

2) Velocity-Time Graph 
 

 v = –ωx0 sin ωt 
   

          (v = 
d
d
x
t

) 

 
 
 
 
 
 
 
 
 
 

   
3) Acceleration-Time Graph 

 
 a = – ω2x0 cos ωt 

 

(a = 
t
v

d
d

 = 
d
d

2

2
x

t
) 

 
 
 
 
 
 
 
 
 
 
 
 

  
 

 

  

- x0 

x 
x0 

t 

v 
ωx0 

-ωx0 

t 

ω2x0 

t 

a 

– ω2x0 

T/4        T/2        3T/4           T     

Case 2: Mass initially at maximum displacement, i.e. When t = 0, x =  x0 
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The graphical representations for v and a against x are as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Recall    a = -ω2x ω2x0 

− ω2x0 

− x0 x0 

Acceleration, a 

Displacement, x 

Displacement, x 

Velocity, v 

ωx0 

− ωx0 

x0 − x0 

22    Recall xxv o −±= ω
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2.3 Case Studies 
A Spring- Mass System  

In this case, we load a spring of natural length l with a mass m. The spring extends by e as a result of 
the mass to counter the weight of the mass. To achieve SHM, we pull the mass to extend the spring 
by a further distance x0 and release it. The mass oscillates freely about the equilibrium position 
between x = x0 and x = − x0. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note the acceleration a of the mass at a displacement x from the equilibrium point is given by 
          

   x
m
ka −=  

      xa 2ω−=     

              ∴ 
m
k

=ω  

For SHM, ω = 2 πf  and f = 
T
1

,     we obtained  
T
πω 2

=  

Period 
k
mT π2=  

F = ma 
mg – ke = 0 
mg = ke 

F = ma 
mg – k(e+x) = ma 
mg – ke – kx = ma 
mg – mg – kx = ma 

– kx = ma 
 

 

(Take downwards as +ve) 

SHM 

e 

Equilibrium 

l 

x0 } 
x =+x0 

x = - x0 

x = 0 

x0 

x0 

x 

P1 P2 P3 P4 

FBD at P2 

mg 

FBD at any displacement x 

k(e+x)  

mg 

ke  

Derivation not 
required 
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We also know that kemg = , hence 
g
e

k
m
= , 

Therefore,    Period 
g
eT π2=  

This is a commonly used expression when we conduct our oscillation experiment. Eventually, for a 
fixed mass, the period of oscillation for this experiment depends only on the amount of extension 
which in turn depends on the stiffness of the spring, as long as Hooke’s law applies. 
 
 

Challenge 
Can you derive the same expressions above for a horizontal spring mass 
system? 
 

 

A Simple Pendulum 

Another case study that we can look into in details would be 
our simple pendulum. In this case, we hang a mass m on a non 
extensible light string of length l and set it to swing back and 
forth as shown in the diagram on the right. The restoring force 
in this case comes from gravity. To be exact, the restoring 
force is the Wx component of the weight as indicated. 
 

θsinWWX =  
 
For small angle θ, θθ ≈sin  (In radians), 
And arc length θ×= lx  
Combining, we get 

ma
l

xWWX =−=  

Applying xa 2ω−= , 

 xa
ml
xW 2ω−==−  

 Rearranging and substituting mgW =  

 
l
g

=ω  

Hence period T is 

  
g
lT π2=  

 
This is another equation that we see in oscillation practical quite often. The only assumption in this 
case is that the angle of oscillation is small so that the small angle approximation holds. Therefore it is 
important to keep the amplitude of oscillation small for pendulum experiment so that the curved arc x 
is approximately straight. In this case, the period of oscillation depends on the length of the pendulum 
and the acceleration due to gravity. It is independent of mass! 
 
  

Derivation not 
required 

θ 

F 

W 

Wy 
  Wx 

θ 

x 

l 

We include a negative sign is because the 
displacement is in the opposite direction of the 
restoring force. 

Derivation not 
required 
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Example 4 
 
A mass oscillates with an amplitude of 0.0030 m and a period of 0.020 s. 
(a)  Find the frequency and angular frequency 
(b) State equation of displacement, given that the mass is initially at equilibrium position 
(c)  Find the equation of velocity and equation of acceleration. 
 
Given:   x0 = 0.0030 m,     T = 0.020 s 

(a) f = ==
020.0
11

T
50 Hz 

 ω =  2 π f = 2 π f = 2 π (50) = 100 π  = 314 rads-1 
(b)   x = x0 sin ωt  
   x = 0.0030 sin 314 t  
(c) x = x0 sin ωt 

 v =       

  a =  

 
  v = 314 (0.0030) cos 314 t = 0.942 cos 314 t 
  a = - 3142 (0.0030) sin 314 t = - 296 sin 314 t 

 
Example 5 
 
In order to check the speed of a camera shutter, the camera was used to photograph the bob of a 
simple pendulum moving in front of a horizontal scale.  
 
The extreme positions of the bob were at the 600 mm and 700 mm marks. The photograph showed 
that while the shutter was open the bob moved from 700 mm to 675 mm mark.  
 
Given that the period of the pendulum was 2.0 s. 
(i) How long did the shutter remain open? 
(ii) Without calculation, comment on the time taken for the bob to travel from 675 mm to 650 mm. 
(iii) Find the speed of the bob when it was at the 675 mm mark. 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(ii)  Time taken should be shorter because the speed of the bob increases towards equilibrium. 
 
(iii) At 675 mm mark, from (i),  t = 0.33 s 
 v = - ω x0 sin ωt 







−= )33.0(

0.2
2sin)50)(

0.2
2( ππv   

                     = -135 mm s-1                                    Note: Negative since it is moving to the left 
 

tx
dt

txd
dt
dx

o
o ωωω cos)sin(

==

xtx
dt

txd
dt
dv

o
o 22 sin)cos( ωωωωω

−=−==

∴
∴

Note: a = –ω2x is the defining 
equation for SHM 

 

600         650         700 mm 

 675 mm 

 t = 0 

(i)   Given T = 2.0 s 

mmxo  50
2

600700
=

−
=

mmx  25650675 =−=
At t = 0, x = x0 

Hence x = x0 cos ωt 

)
0.2

2cos(5025 tπ
=

t = 0.33 s  
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2.4 Energy of Simple Harmonic Motion (SHM) 
 
(h)  describe the interchange between kinetic and potential energy during simple 

harmonic motion. 
 
A Simple Pendulum 
An object executing SHM interchanges its kinetic and potential energies.  For the simple pendulum 
system, the bob loses kinetic energy after passing through the middle of the swing, and then stores 
the energy as potential energy as it rises to the top of the swing.  

Assume air resistance to be negligible, 
 
 Function of displacement (x) Function of time (t) 

Kinetic 
Energy 
 

EK 

Sub. v = ±  ω 22 xxo −  
                into 
    EK = ½mv2 
 
To get 

EK =  ½mω2(xo
2  –  x2) 

 

If   x = xo sin ωt, 
Then differentiating x w.r.t time,   
v   =  ωxo cos ωt  
Which will be sub. into 
EK =  ½mv2 
 
To get 

EK =  ½mω2 xo
2cos2 ωt  

 
Potential 
Energy 
 

EP 

EP =   ET      –            EK   
     =½mω2xo

2  –    ½mω2(xo
2 –  x2) 

 
Hence, 

EP =  ½mω2x2 
 

Sub.   x = xo sin ωt, 
into     EP = ½mω2 x2  
 
To get 

EP  = ½mω2 xo
2sin2 ωt  

 
Total 
Energy 
 

ET 

 
Kinetic energy EK is maximum when x = 0, as 
velocity is maximum at the centre of oscillation. 

Max. EK = 2
0

2

2
1 xmω  , EP = 0 (vice 

versa) 

ET = 2
0

2

2
1 xmω  (at all positions) 

 
Hence ET is shown to be independent of 
its position. 
 

  
ET = EK + EP 

       = txmtxm ωωωω 22
0

222
0

2 sin
2
1cos

2
1

+  

 

 ET  = 2
0

2

2
1 xmω     

 
Hence ET is shown to be independent of time. 
 

The graphical representations of various energies with respect to displacement are as follows. 

EK = 0 
EP = max EK = max 

EP = 0 

EK = 0 
EP = max 

x = x0 x = ‒ x0 
x = 0 

ET = EK + EP 

Note: take equilibrium position as 
reference zero for Potential Energy 
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The graphical representation of various energies with respect to time are as shown below. 
 
 
 
 
 
 
 
 
 
 

 
 
 

Displacement, x 

Energy, E 

x = 0 

EK =½mω2(xo
2  –  x2) 

       EP = ½mω2x2 

ET = ½mω2xo
2 

x = x0 x = -x0 

Energy 

ET = ½ mω2x0
2 

time 

EK= ½ mω2xo
2cos2ωt EP = ½ mω2xo

2sin2ωt 

T 
T 
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A Spring-Mass System 
 
An object executing SHM in a spring-mass system interchanges three types of energies, namely 
kinetic energy, gravitational potential energy and elastic potential energy.   
 
Kinetic energy (KE) depends on the speed of the object, which in turn depends on its displacement 
from the equilibrium position.  
 
Gravitational potential energy (GPE) depends on the height of the object from an arbitrary chosen 
point, usually taken at the lowest point of the oscillation.  
 
Elastic potential energy (EPE) depends on the extension of the spring from its original length and can 
be calculated by assuming Hooke’s Law is valid.  
 
Total energy (TE) is sum of the three energies and is constant throughout the SHM.  
 
 

 

 

 

 

 

 

 

 

 

 
Guiding Equations: 

KE = ½ mv2   where   v = ±  ω 22 xxo −  and x is displacement from equilibrium position 
GPE = mgh     where h = 0 at the lowest point of the oscillation (arbitrary) and h = x0 - x 

EPE = ½ k (e + x)2   where e is the extension of the spring at equilibrium position 

TE = KE + GPE + EPE  

 KE GPE EPE TE 
Displacement  
       x = x 

½ mω2(x0
2 – x2 ) mg(x0 – x) ½ k (e + x)2     

KE 
+ 

GPE 
+ 

EPE 

Highest Point  
      x = – x0 

0 2mgx0 ½ k (e – x0)2    
Equilibrium 

Position x = 0 
½ mω2x0

2  mgx0  ½ k e2    
Lowest Point 

x = + x0 
0 0 ½ k (e + x0)2    

 
Note: PE = ½ m ω2x2 cannot be applied directly here because  
PE = GPE + EPE and we did not set GPE + EPE = 0 at x = 0. 
 

  

e 

Equilibrium 

l 

x0 } SHM 

x =+x0 

x = - x0 

x =0 
x0 

x0 

x 
h 

Reference 
h = 0 



Dunman High School (Senior High Physics Department) 

9646 Physics 
Topic 9: Oscillations 9-19 

Example 6 
Hui Yi did 1.5 J of work to set a pendulum of mass 0.50 kg in oscillation. If the pendulum takes 30 
seconds to complete 20 oscillations, find the maximum displacement of the pendulum. 

 
Solution 
Period of the pendulum T = 30/20 = 1.5 s 
Angular frequency ω = 2π/T = 4.2 rad s-1 
Using PE = ½mω2x2, 
1.5 = ½ × 0.50 × 4.22 x0

2  
x0 = 0.58 m  
The displacement of the pendulum is 0.58 m  
 
 
 
 

  

Note: If Hui Yi did 1.5 J just lifting the 
pendulum, she would have lifted it by  
1.5 ÷ (0.5 × 9.81) = 0.31 m only. Therefore the 
displacement here is different from the height.  

∴ mghtxmPE == ωω 22
0

2 sin
2
1

 is valid. In 

fact, the displacement measured here is the 
arc length of the pendulum swing 
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3 Damped Oscillations, Forced Oscillations and Resonance 
(i)  describe practical examples of damped oscillations with particular reference to the effects 
of the degree of damping and the importance of critical damping in cases such as a car 
suspension system. 
 
The assumption that there is no resistance to motion is not valid in everyday situations. 
Some energy will always be lost by the system to overcome dissipative forces, e.g. friction, 
air resistance. As energy is used to overcome resistive forces, the amplitude of the 
oscillation decreases since total energy is directly proportional to the square of amplitude. 
Such oscillations are called damped oscillation. 
 
Damping is a process where energy is taken from an oscillating system as a result of 
dissipative forces. 
 

 
Extent of 
Damping 

 
Characteristics Practical 

applications Graphical representation 

Light 
damping 

Oscillations are maintained about 
the equilibrium position after the 
system has been displaced.   
 
The amplitude of oscillations 
decreases over a long time. 

Meters which need to 
show rapid 
fluctuations such as 
“level meters’ on tape 
recorders are lightly 
damped. 
 
 
 

 

Critical 
damping 

No oscillations occur.   
 
The motion is brought to rest in 
the shortest possible time. 

 
 

Meters such as 
ammeter and 
voltmeter which 
required the needle 
not to oscillate at the 
final reading. 
 
Car suspension 
system. 
 

 

Heavy 
damping 

No oscillations occur about the 
equilibrium position when the 
damping force increases beyond 
the point of critical damping.   
 
The system takes a long time to 
return to the equilibrium position 
relative to critically damped 
system. 

 
 

Meters which are 
required to ignore 
transient changes 
(such as car fuel 
gauges) are 
overdamped.   
 
Door is heavily 
damped for safety 
reasons. 
 
 

 

 

 

 

displacement 

displacement 

0 

displacement 

time 
0 

time 
0 

time 

~ T/4 
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j)  describe practical examples of forced oscillations and resonance. 

Forced Oscillations and Resonance 

• As damping causes energy to be lost, an external energy source is required to maintain 
oscillations at constant amplitude. 
 

• The external agent providing the energy is called the driving force.  
 

• The oscillator is the driven system, which undergoes forced oscillations due to the driving 
force. 

 
• Forced oscillations are caused by continual input of energy by external source to an 

oscillating system to compensate the loss due to damping in order to maintain the amplitude 
of the oscillation. 
 

• Examples: 
1.  Engine vibrations cause bus windows to vibrate. 
2.  Spinning drum causes washing machine to vibrate. 

 
• Any mechanical system that is free to move has a natural frequency f0 which depends on its 

dimensions and nature of material. 
 

• A system undergoes forced vibrations when it is subjected to a driving force of a certain 
driving frequency f, there is a transfer of energy. 
 

• When the driving frequency f = natural frequency f0, the amplitude of vibration of the system 
becomes a maximum, and the system is set in resonance. 
 

• Resonance occurs when the resulting amplitude of the system becomes a maximum when 
the driving frequency of external driving force equals to natural frequency of the system.  

 At resonance, there is a maximum transfer of energy from the driving system to the 
 driven system. 
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(k)  describe graphically how the amplitude of a forced oscillation changes with frequency 
near to the natural frequency of the system, and understand qualitatively the factors 
which determine the frequency response and sharpness of the resonance. 

  
Frequency Response (amplitude vs driving frequency graph) 
 
If the amplitude of oscillation is plotted against driving (forcing) frequency, the resulting 
graph is the frequency response of the system. 

 
 

      
 
 
 
 
 
 
 
 
 
 
 
 

 
 

The sharpness of the response depends on the damping forces involved.  Theoretically, with 
no damping, the amplitude of oscillation of the driven system should tend to an infinitely 
large magnitude at the resonant frequency.  This is because there is a continuous input of 
energy. 
 
In practice, damping always exists and the amplitude and energy will increase until the rate 
of energy transfer is equal to rate of energy dissipation. 
 
Notice that as the degree of damping is increased, 

• the amplitude of the peak oscillation decreases. 
• the peak becomes broader as it spreads over a wider range of frequencies (the 

response is less sharp). 
• resonance occurs at a frequency smaller than the natural frequency. 

 

Consider an oscillating system of natural 
frequency fo.  When the external driving 
frequency, f is slowly increased from a small 
value, the amplitude of oscillation of the 
driven oscillating system will increase to a 
maximum value at the resonant frequency 
(where the driving frequency equals to the 
natural frequency of the system).  Thereafter, 
as the driving frequency is increased further, 
the amplitude of oscillation of the driven 
system decreases.   

 

, f , f0 
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(l)  show an appreciation that there are some circumstances in which resonance is useful 
and other circumstances in which resonance should be avoided.   

 
Useful Resonance Destructive Resonance 

Musical Instruments 
 
Resonance is responsible for the 
production of sound in many musical 
instruments especially the wind 
instruments. 
 

Shattering of Glass 
 
It has been known for high-pitched sound 
waves to shatter fragile objects.  For example, 
an opera singer hitting a top note may shatter 
a wine glass at resonance.  
 
 

Radio Receptions 
 
A radio receiver works on the principle of 
resonance.  Our air is filled with radio 
waves of many different frequencies which 
the aerial picks up.  The tuner can be 
adjusted so that the frequency of the 
electrical oscillations in the circuits is the 
same as that of the radio waves 
transmitted from the particular station we 
desired. The effect of resonance amplifies 
the signals contained in this wave while 
the radio waves of other frequencies are 
diminished. 
 

Earthquakes 
 
During earthquakes, buildings are forced to 
oscillate in resonance with the seismic 
waves, resulting in serious damages. In 
regions of the world where earthquakes 
happen regularly, buildings may be built on 
foundations that absorb the energy of the 
shock waves. In this way, the vibrations are 
damped and the amplitude of the oscillations 
cannot reach dangerous levels. 
 

Microwave Cooking 
 
In a microwave oven, microwaves with a 
frequency similar to the natural frequency 
of vibration of water molecules are used.  
When food containing water molecules is 
placed in the oven, the water molecules 
resonate, absorbing energy from the 
microwaves and consequently get heated 
up.  This absorbed energy then spreads 
through the food and cooks it.  The plastic 
or glass containers do not heat up since 
they do not contain water molecules. 
 

Human Internal Organs 
 
In human beings, internal organs can be 
made to resonate in response to external 
frequencies, usually below 10 Hz.  High levels 
of vibration can cause serious, or even fatal 
lung, heart, intestinal, and brain damage. 
 

Magnetic Resonance Imaging 
 
Strong, varying radio frequency 
electromagnetic fields are used to cause 
oscillations in atomic nuclei. When 
resonance occurs, energy is absorbed by 
the molecules. By analyzing the pattern of 
energy absorption, a computer-generated 
image can be produced.  
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Additional Example 1 (Comparing SHM with uniform circular motion) 
 
Consider a turntable carrying a metallic knob S, rotating at constant angular frequency ω.  Light from 
a source casts a shadow of the knob on a screen. 
 
Notice how the shadow of S in uniform circular motion undergoes to-and-fro sinusoidal motion.  As S 
moves through one revolution, the displacement of its shadow undergoes one complete sinusoidal 
variation with time. 
 
 
 
 
 
 
 
 
 
 
 
 
(i) Show that the equation for displacement of the shadow is in the form x = xo sin ωt.  
 
Let r be the radius of circular motion and θ be the angle moved by the knob in time t. 

From the triangle on the diagram:     sin θ = 
r
x       ⇒    x = r sin θ       

Since angular frequency ω = 
t
θ

and amplitude xo = r,   ⇒    x = xo sin ωt     (shown) 

 
 
(ii) A student placed a ruler against the shadow of the knob produced. She noticed that the shadow 

moved from one extreme position of 50 cm to the other extreme position of 90 cm in an average 
time of 2.5 seconds.   
 
What is the time taken for the shadow to move from 70 cm to 60 cm? 

 
The equilibrium position is at l = 70 cm.      ∴Amplitude xo = 20 cm. 
 
Suppose time starts when shadow is positioned at  l = 70 cm   i.e.   x = 0 cm,  
 

We use x = xo sin ωt    (since t = 0, x = 0) 
 
Thus, x = xo sin        t             where T = 2 x 2.5 = 5.0 s 
  

When the shadow displaces from 70 cm to 60 cm, x = 10 cm 
  
From   x = xo sin         t  
 

∴ 10 = 20 sin           t 
 
Hence, t = 0.42 s 

 
 

T
π2

T
π2

0.5
2π

t 

S 

θ 
x r 

x0 x 
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Additional Example 2 
 
At Liverpool the tide is nearly sinusoidal and has a period of 12 hours 40 minutes. The difference in 
height between high and low tides is 7.4 m. Find  

(a) the length of time within a cycle during which the water is more than 5 m    
      above low tide.  
(b) the rate at which the tide is rising or falling when the water is 5 m above low  
      tide.  

 

 
 
 
 
 
 
(a)  Let t1 and t2 be the times when the tide is 5.0 m above the low tide i.e. 1.3 m above the mean sea 
 level.  
       x  =   xo sin ωt    
       1.3 =  3.7 sin (2π/45600)t  
       t1  =  2610 s 
 
       By symmetry, t2  =  T/2 – t1  =  22800 – 2610 =  20200 s 
       Time when sea level is > 5 m above low tide 
       =  t2 – t1  =  20200 – 2610  =  17600 s =  4 hr 53 min 
 
(b) Rate of rise of tide, 
      v  = dx/dt = d/dt (x0 sin ω t)  
          = ω x0 cos ωt1 
 =  (1.38 × 10–4) (3.7) cos (1.38 x 10–4 × 2610) 
 =  4.8 × 10–4 m s-1 = 0.48 mm s-1  
  
Alternatively,  v  =  ω √(xo

2  –  x2)                       (considering magnitude) 
                 =  (1.38 × 10–4)√(3.72 – 1.32)    =  4.8 × 10–4 m s-1   =   0.48 mm s-1  
 
 
 
 
 

Period T  =  (12 × 60 + 40) × 60 =  45600 s 

Angular frequency  ω =  2π/T  = 1.38 × 10–4 rad s–1  
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Additional Example 3 
 
A particle of mass 4.0 kg moves with simple harmonic motion and its potential energy U varies with 
position x as shown.  
 

(a) What is the total energy of the system? 
  

       (b) What is the period of oscillation of the mass?        

 
 

 
 

 
 
 
 
 

1.0 

(a) From the graph,  

         Umax = 1.0 J 

       Total energy = Umax = 1.0 J 

(b)      ET  = ½mω2xo
2 

          1.0  =  ½(4.0) ω2(0.20)2 

           ω  =  3.5 rad s-1 

 

                 

                 

       

      

 

x / m 
0 0.20 

U / J 
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Oscillation Definition List 

 

Oscillation It is a periodic motion of an object about a certain mean equilibrium position 
with a continuous interchange of kinetic energy and potential energies. 

Forced oscillations Forced oscillations are caused by continual input of energy by external source 
to an oscillating system to compensate the loss due to damping in order to 
maintain the amplitude of the oscillation. 

Damped simple harmonic 
oscillations 

Oscillation in which there is a continuous transfer of energy to the 
surroundings due to dissipative force such that the energy in the system 
decreases with time, hence the amplitude of the motion progressively 
decreases with time.  

Equilibrium position Equilibrium position (or neutral position) is the position at which no net 
force acts on the oscillating mass. 

Angular frequency (ω) 
(2008) 

Angular frequency (ω) of an oscillation refers to the constant which 
characterises the particular simple harmonic oscillator and is related to its 
natural frequency given by  ω = 2πf.   
Or 
The angle in radians by which the phase of the motion changes per unit time. 
 
Unit:  radian per second (rad s−1). 

Frequency (f) 
(2008) 

Frequency is the number of complete to-and-fro cycles per unit time made by 
the oscillating object.   
Unit: Hertz.       (1 Hz is equal to one cycle per second.) 
 

Period (T) Period (T) is the time taken for one complete oscillation.   
Unit: second. 

Phase Phase is an angle in either degrees or radians which gives a measure of the 
fraction of a cycle that has been completed by an oscillating particle or by a 
wave. 

Phase difference 
(2010) 

Phase difference is a measure of how much one wave is out of step with 
another. It is measured in either degrees or radians. 

In-phase phase difference is zero.  

Out of Phase  phase difference is not zero. 

Anti-phase phase difference is 180 degrees or π radians. 

Displacement Displacement is the distance of the oscillating mass from its equilibrium 
position at any instant in a stated direction. 
 

Amplitude Amplitude is the maximum displacement of the oscillating mass from the 
equilibrium position in either direction. 
 

Simple Harmonic motion 
(SHM)  (2003, 2006, 2007, 
2008, 2009) 

Defined as oscillatory motion of a particle whose acceleration is directly 
proportional to its displacement from the equilibrium position and this 
acceleration is always in opposite direction to its displacement. 

Damping Damping is a process where energy is taken from an oscillating system as a 
result of dissipative forces. 

Light damping Oscillations are maintained about the equilibrium position after the system has 
been displaced.  The amplitude of oscillations decreases over a long time. 

Critical damping No oscillations occur.  The motion is brought to rest in the shortest possible 
time. 
 

Heavy damping No oscillations occur about the equilibrium position when the damping force 
increases beyond the point of critical damping.  The system takes a long time 
to return to the equilibrium position compared to critically damped system. 

Natural Frequency Any mechanical system that is free to move has a natural frequency f0 which 
depends on its dimensions and nature of material. 

Resonance (2005) Resonance occurs when the resulting amplitude of the system becomes a 
maximum when the driving frequency of external driving force equals to 
natural frequency of the system.  At resonance, there is a maximum transfer 
of energy from the driving system to the driven system. 
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Tutorial Questions 

Simple harmonic motion  

Self-Attempt Questions 
1. (a) Give two examples of free oscillations. 
 (b) Define simple harmonic motion (s.h.m.). State the defining equation of s.h.m., 

and explain all the symbols used. 
(c) Is a bouncing ball an example of s.h.m.? Give a reason for your answer. 

 
 
2. The graphs below show how the displacement x, velocity v and acceleration a of a 

body vary with time t when it is oscillating with simple harmonic motion. 
 
 
 
 
 
 
 
 
 
 

What is the value of T?  [2.1 s] 
 
 

3. The figure shows the displacement-time graph of a simple harmonic oscillator. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Deduce the following quantities: 
(i) amplitude,  [20 cm] 
(ii) period,  [0.4 s] 
(iii) frequency,  [2.5 Hz] 
(iv) angular frequency,  [15.7 rads-1] 
(v) displacement at A,  [-10.0 cm] 
(vi) Using your answers (a)(i) and (iv), write down an equation that 

describes the variation of displacement, x, with time, t, as shown in 
the graph.  

(vii) Substitute (v) the displacement at A into the equation to find the 
corresponding time. Check that it agrees with the value from the 
graph. 

Time/s 

T t/ s 

2 

-2 

x/ m 

T t/ s 

6 

-6 

v/ ms-1 

T t/ s 

18 

-18 

a/ ms-2 
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(viii) At which point (A,B,C) is the velocity maximum? State whether the 
direction is positive or negative. Explain your answers. 

(ix) At which point (A,B,C) is the acceleration maximum? State whether 
the direction is positive or negative. Explain your answers. 

 
 (b) Deduce the following quantities: 

(i) velocity at B       [0 ms-1] 
(ii) velocity at C       [3.14 ms-1] 
(iii) acceleration at B      [49.3 ms-2] 
(iv) acceleration at C.      [0 ms-2] 

 
(c) Sketch for this oscillator,  

(i) the acceleration-time graph  
(ii)  the velocity-time graph 
(iii) the velocity-displacement graph 
(iv) the acceleration-displacement graph. 

 
 
4. A 0.5 kg body performs simple harmonic motion with a frequency of 2.0 Hz and 

amplitude of 8 mm.  
 
Determine the maximum velocity and the maximum acceleration and the 
corresponding positions of the body.     [0.10 ms-1, 1.26 ms-2]  

 
Discussion Questions 
 
5. TYS (8)9 Q2 (2004 P2 Q1b) 
 
6. A light platform is supported by two identical springs, each 

having spring constant 20 N m-1 as shown in the figure on 
the right 
(a) Calculate the weight which must be placed on the 

centre of the platform in order to produce a 
displacement of 3.0 cm.               

(b) The weight remains on the platform and the 
platform is depressed a further 1.0 cm and then 
released.  

 (i)  What is the frequency of the oscillation of 
 the platform?            

 (ii) Sketch the displacement-time graph of the oscillation 
(iii) Mark on your sketch the times at which the acceleration of the 

platform is maximum and calculate this acceleration 
 
  

Platform 



Dunman High School (Senior High Physics Department) 

9646 Physics 
Topic 9: Oscillations 9-30 

7. Mediacorp wants to add a new twist to its new variety show game. They want to 
design a pendulum that has a period of 10 seconds. Contestants are to answer 
questions within 10 seconds and the pendulum will serve the purpose of a time 
keeper. Help Mediacorp by calculating the unknown dimensions (D,H & L) required 
for such a pendulum shown in the figure below. Neglect size of pendulum bob. 

           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Energy in simple harmonic motion 
 
Self-Attempt Question 
8 Refer to the displacement-time graph in Q3. Given that the mass of the oscillator is   

1 kg. 

(a) At which point (A,B,C) is  
 (1) the potential energy maximum?  (2) the kinetic energy maximum? 
 

(b) Find the kinetic energy and the potential energy of the oscillator at C and B. 
                 [0 J, 4.93 J] 
 (c) Sketch for the oscillator, labelled graphs on the same horizontal time axis,  

 (i) the variation of its kinetic energy, 
(ii) the variation of its potential energy, 
(iii) the variation of its total mechanical energy. 

 
(d) Sketch for the oscillator, labeled graphs on the same horizontal displacement 

axis,  
(i) the variation of its kinetic energy, 
(ii) the variation of its potential energy, 
(iii) the variation of its total mechanical energy. 

 
Discussion Question 
9 TYS (8)21 Q3 (2010 P3 Q6) 
 
10 TYS (8)17 Q1 (2008 P3 Q6) 
 
  

1o 

Length L 

Height 0.5 m Height H 

Platform to release pendulum Distance D for the pendulum swing 
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Damped oscillations and forced oscillations: resonance 
 
Self-Attempt Question 
 
11 Explain what is meant by damped oscillation, and suggest how damping can be 

increased in a spring-mass oscillation. 
 
12 (a) Sketch a set of displacement-time graphs using the same axes, to show 

oscillatory motion that is 
(i)  underdamped,  
(ii)  critically damped,   
(iii)  overdamped. 

 
(b) Give an example of an application of critical damping. 

 
13 Explain what is meant by forced oscillation and resonance. State a situation in which 

resonance is used to advantage.  
 
 
Discussion Question 
 
14 In the military, there is a long standing tradition that you do not march soldiers over a 

bridge in step. Every soldier is allowed to march at his own step. What could be the 
possible reason for this practice? 

 
15. Why is it that when a vehicle is stationary, it vibrates violently but when the vehicle is 

in motion, the vibration is reduced? 
 
16. If there is little to no damping on the receiver of the microphone, what could happen if 

it picks up sound signals near the natural frequency of the receiver? Sketch the 
amplitude – driving frequency graph and explain how a good microphone would work 
with the concepts of resonance. 

 
17. The suspension of a car may be considered to be a spring under compression 

combined with a shock absorber which damps the vertical oscillations of the car. 
Sketch graphs, one in each case, to illustrate how the vertical height of the car above 
the road will vary with time after the car has just passed over a bump if the shock 
absorber is 

 (a) not functioning (i.e. slides without resistance) 
 (b) operating normally 
 
18. TYS (8)24 Q4 (2011 P3 Q7) part (a) & (b) only 
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Challenge Accepted (See P14) 
19. A block of mass is attached to the end of a spring, with the block free to move on a 

horizontal frictionless surface. When the spring is neither stretched nor compressed, 
the block is at the equilibrium position, where x = 0, as shown in Fig. 1.1. When the 
block is pulled by a distance from the equilibrium position as shown in Fig. 1.2 and 
subsequently released, it oscillates back and forth about its equilibrium position.  

 
(a) Show, from first principles, that the motion of the object is simple harmonic 
motion. You may make use of Fig. 1.2 and Fig. 1.3 as part of your working.  

 
(b) Hence, derive the expression for the period of the simple harmonic motion in term 
of the spring constant k and mass of the block m.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Challenging Question (Not in Syllabus, requires a bit of Calculus and Trigonometry) 
20. The defining equation for SHM can be modified for forced oscillations with damping 

by considering Newton’s 2nd Law.  

𝑚
𝑑2𝑥
𝑑𝑡2

= −𝑚𝜔02𝑥 
 
 where ω0 is the frequency of a free oscillator. 
 

We can take the driving force F = F0cosωt, where F0 is a constant and ω is the 
angular frequency of the force and the damping force f = -kv, we get 

𝑚
𝑑2𝑥
𝑑𝑡2

= −𝑚𝜔0
2𝑥 − 𝑘

𝑑𝑥
𝑑𝑡

+ 𝐹0𝑐𝑜𝑠𝜔𝑡 
 

Given that the steady state solution of the damped forced oscillator is 
𝑥 = 𝐴𝑐𝑜𝑠(𝜔𝑡 + 𝜙) 

(a) Find A and φ 
 
(b) Explain how your solution in (a) explains the resonance graphs we learned in 

this topic. 

m Fig. 1.2  

m Fig. 1.3  

Fig. 1.1  

x = 0 

m 
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