A student is collating orders for her class for lunch during Teacher's Day celebration:

- Each student has ordered at least 2 items and up to 3 items from the menu.
- Each menu item has a unique ID code. For mains, the ID begins with an 'M'. For sides, the ID begins with an 'S". For drinks and dessert, the ID begins with a 'D'.

You are required to finish setting up the spreadsheet to tabulate the orders and total cost.

Open the file **TASK1.xlsx**. You will see the following data.

Save the file as TASK1_<your name>_<class>_<index number>.xlsx

1	Α	В	С	D	E	F	G	н	1	J	K	L	М	N	0
1	Lu	nch Orders for	Teach	ner's	Day Ce	elebr	ation								
2	Ord	ers										Sum	mary		
3	No.	Student	Order 1	Cost	Order 2	Cost	Order 3	Cost	Discount	Total Cost		ID	Item Name	Price	Quantity
4	1	Prakash Gibson	D07		D03		S07					M01	Tenderloin Steak	\$11.30	
5	2	Ophelia Eliot	D06		S07		S06					M02	Burger Steak	\$10.40	
6	3	Matthias Aldenberg	M07		D03		D08					M03	Spring Chicken	\$8.30	
7	4	Akemi Stanford	M08		M04		D07					M04	Bratwurst	\$11.50	
8	5	Winnie Holt	M09		S04		S07					M05	Grilled Salmon Fillet	\$12.80	
9	6	Justina Kanzaki	M09		S06		D02					M06	Fish and Chips	\$14.00	
10	7	Meagan Pender	D01		S05							M07	Crayfish Platter	\$13.90	
11	8	Sree Kendall	D02		S02		D08					M08	Margherita Pizza	\$12.70	
12	9	Jody Miyazaki	M08		D07		S06					M09	Carbonara	\$14.90	
13	10	Dinah Hagen	D07		M04		D02					S01	Baked Potatoes	\$6.10	
14	11	Naruhito Lewis	D01		M05							S02	Chili Cheese Fries	\$6.70	
15	12	Dawn Janssen	M06		S03		D01					S03	Caesar Salad	\$6.20	
16	13	Phemie Dries	D06		D03		M07					S04	Onion Rings	\$6.70	
17	14	Javed Leighton	D08		D06							S05	Buffalo Wings	\$7.10	
18	15	Liddy Pryor	M09		D08		D05					S06	Calamari	\$6.80	
19	16	Yūdai Aaltink	D09		M06							S07	Lobster Bisque	\$7.80	
20	17	Cortney Hermanson	S03		S08		D06					S08	Cream of Mushroom	\$6.00	
21	18	Usman Dustin	S01		D08		D04					S09	Garlic Bread	\$6.30	
22	19	Hartley Lam	D07		S06		S09					D01	Hot Cocoa	\$6.10	
23	20	Lilibeth Nelissen	M09		S02							D02	Black Tea	\$5.60	
24	21	Kaylynn Cobb	S06		M04		D02					D03	Cappuccino	\$7.00	
25	22	Wynne Field	M05		D09		S08					D04	Lemonade	\$6.60	
26	23	Veva Constable	S08		S05		M01					D05	Root Beer	\$6.70	
27	24	Winnifred Richard	S03		M06		D06					D06	Soda Water	\$5.40	
28	25	Akira Hubert	S09		S08		D09		1			D07	New York Cheesecake	\$5.00	
29												D08	Brownie	\$5.00	
30							A	verage	Payment:			D09	Apple Strudel	\$7.90	

For the following questions, where appropriate, all currency values should be shown in 2 decimal places, e.g. \$1.00.

- In cells D4 to D28, use an appropriate function to determine the corresponding prices of each order item in cells C4 to C28 from the 'Summary' table on the right. Likewise, complete cells F4 to F28 with prices of order items in cells E4 to E28.
 [2]
- 2 In cells **H4 to H28**, use an appropriate formula to determine the corresponding prices of each order item in cells **G4 to G28** from the '**Summary**' table on the right. If the student has not ordered a third item, then the price should be shown as \$0.00. [1]
- 3 If a student has ordered a main, a side and a drink or dessert, then it is considered a **set meal** and the student will be entitled to a **10% discount**.

In cells **I4 to I28**, use an appropriate function to determine the discount amount each student is entitled to, in dollars.

- [2]
- In cells J4 to J28, use an appropriate formula to determine the total cost that each student needs to pay for their lunch, taking into consideration the discount that they are each entitled to.
 [1]
- 5 In cells **O4 to O30**, use an appropriate function to determine the total quantity ordered by the class for each menu item.
 [2]
- In cell J30, use an appropriate function to determine the average payment to be made by each student.[1]
- In cells J4 to J28, apply conditional formatting to underline the values that are equal to or greater than 120% of the average value found in Question 6.
 [1]

The following program helps the user to solve a quadratic equation, $ax^2 + bx + c = 0$, where the values for *a*, *b* and *c* are integers input by the user.

```
a = int(input("Enter value of 'a': "))
b = int(input("Enter value of 'b': "))
c = int(input("Enter value of 'c': "))
sol1 = (-b+(b**2-4*a*c)**0.5)/(2*a)
sol2 = (-b-(b**2-4*a*c)**0.5)/(2*a)
print(sol1, sol2)
```

Open the file TASK2.py

Save the file as TASK2_Q8_<your name>_<class>_<index number>.py

- 8 Edit the program so that it:
 - (a) Outputs the statement "The solutions to this quadratic equation are X and Y." at the end of the program, where X and Y represents the value of the two solutions.
 - (b) Checks whether the two solutions are the same. If they are, the program should output the statement "The only solution to this quadratic equation is X." at the end instead.
 - (c) It checks whether the determinant, $b^2 4ac$, is less than zero. If it is less than zero, the program should output the statement "There are no real solutions to this quadratic equation." without performing any further calculations. [2]

Save your program.

9 Save your program as TASK2_Q9_<your name>_<class>_<index number>.py

Edit the program so that it:

(a) Asks the user for confirmation after *a*, *b* and *c* values are input. For example, "The quadratic equation is Ax² + Bx + C = 0, correct? (Y/N):" where A, B and C represents the *a*, *b* and *c* values keyed in by the user.

If the user inputs "N", then the program should ask to re-enter the values again until the user confirms with a "Y". [2]

(b) When asking the user for confirmation in part (a), the quadratic equation displayed is simplified. The two examples below describe how it should be simplified.

When values of *a* and *b* are 1 or -1, the program should omit the "1" character in the equation. For example:

 $"-1x^{2} + 1x + 2 = 0"$ is simplified as $"-x^{2} + x + 2 = 0"$.

When values of b and c are negative, the program should omit the "+" character in the equation. For example:

 $"2x^{2} + -3x + -4 = 0"$ is simplified as $"2x^{2} - 3x - 4 = 0"$.

[3]

Save your program.

The following program provides information about the COVID-19 vaccination programme in Singapore. The program does the following:

- Allows the user to input their year of birth and whether they have drug allergy.
- Informs the user the type of vaccine they are eligible for and whether an appointment is required, based on the table below:

Age (Years)	No Drug	With Drug Allergies	
<12	Not E	Not Eligible	
12 - 17	Pfizer-BioNTech (Not Eligible	
18 - 59	Pfizer-BioNTech	Moderna	Novavax
	(With appointment) (Without appointment)		(With appointment)
> 59	Pfizer-BioNTech	Moderna	Novavax
	(Without appointment)	(Without appointment)	(Without appointment)

There are several syntax errors and logical errors in this program:

```
age = int(input("Enter your year of birth: ")) - 2021
allergy = int(input("Do you have any drug allergies? (Y/N): "))
eligible with appt = ""
eligible without appt = ""
if age >= 59:
    if allergy == "N":
        eligible without_appt += ["Pfizer-BioNTech"]
        eligible without appt += ["Moderna"]
    else:
        eligible without appt += ["Novavax"]
if age >= 18:
    if allergy == "N":
        eligible with appt += ["Moderna"]
        eligible without appt += ["Pfizer-BioNTech"]
    else:
        eligible with appt += ["Novavax"]
if age > 12:
    if allergy == "Y":
        eligible with appt += ["Pfizer-BioNTech"]
if len(eligible_without_appt) ==0 or len(eligible with appt) ==0:
    print("You are not eligible for any vaccination.")
else:
print("You are eligible for:")
for vaccine in eligible without appt:
    print("- {} vaccine without appointment.".format(vaccine))
for vaccine in eligible with appt:
    print("- {} vaccine with an appointment.".format(vaccine))
```

Open the file TASK3.py

Save the file as TASK3_<your name>_<class>_<index number>.py

10 Identify and correct the errors in the program so that it works according to the description given. [10]

Save your program.

You have been asked to create a program for a simple calculator that performs the four basic mathematical operations, +, -, \times and \div .

The program should allow you to:

- Enter a mathematical expression represented by two positive real numbers separated by a basic operator between them. The multiplication operator (x) is represented by "*" and the division operator (÷) is represented by "/", for example, "1.2*3.3" and "5/3"
- Output the evaluated result, beginning with an equal sign (=), for example "=3.96". You may use the function format(float,'.10g') to limit the result to 10 significant digits.
- Asks the user to input the next mathematical expression to be evaluated. This program should repeat until the user enters an empty input, i.e. "".

Example:

```
Enter an expression: 0.2+0.3
=0.5
Enter an expression: 9-4
=5
Enter an expression: 1.5*8
=12
Enter an expression: 12/4.0
=3
Enter an expression: >>>
```

11 Write your program and test that it works.

[5]

Save your program as TASK4_Q11 _<your name>_<class>_<index number>.py

- **12** When your program is complete, use the following test data:
 - 0.1+0.2 3-2 0.5*6 9/3.0

End the program with an empty input, i.e. "".

Take a screenshot of the outputs displayed on the screen and save as: [2] **TASK4_Q12** _<your name>_<class>_<index number>

Save your files in either .png or .jpg format.

13 Save your program as TASK4_Q13 _<your name>_<class>_<index number>.py

Extend your program to check for any division by zero. If a division by zero is found in the expression, inform the user that the expression cannot be evaluated and the user will be required to key in a new expression. [3]

Save your program.

- 14 Extend your program to evaluate expressions with any number of operators, as described below:
 - (a) When there are **no operators** in the expression, the expression is simply returned together with an equal sign "=". [2]

For example, the expression "4.2" gives the result "=4.2".

Save your program as TASK4_Q14a _<your name>_<class>_<index no.>.py

(b) When there are more than one operator in the expression, the multiplication "*" and division "/" operators are evaluated first before the addition "+" and subtraction "-" operators are evaluated.

For example, the expression "3+2*2" gives the result "=7" as **2×2** is evaluated first before **3** is added.

When there are **consecutive** multiplication "*" and division "/" operators in the expression, the first operator on the left will evaluated first.

For example, the expression "3/3*3" gives the result "=3" as **3/3** is evaluated first before it is multiplied by **3**.

[8]

Save your program as TASK4_Q14b _<your name>_<class>_<index no.>.py

END OF PAPER

QUICK REFERENCE FOR PYTHON

1 Identifiers

When naming variables, functions and modules, the following rules must be observed:

• Names should begin with character 'a'-'z' or 'A'-'Z' or '

and followed by alphanumeric characters or '_'.

- Reserved words should not be used.
- User-defined identifiers are case sensitive.

2 Comments and Documentation Strings

This is a comment

.....

This is a documentation string over multiple lines

.....

3 Input/Output

print ("This is a string")

s = input ("Instructions to prompt for data entry.")

4 Import

import <module>

e.g. import math

5 Data Type

Data Type	Notes
int	integer
float	real number
bool	boolean
str	string (immutable)
list	Series of values

6 Assignment

Assignment Statement	Notes
a = 1	integer
b = c	variable
d = "this is a string"	string
mylist = [1, 2, 3, 4,5]	list or array

7 Arithmetic Operators

Operator	Notes
+ -	plus, subtract
* /	multiply, divide
%	remainder or modulus
**	exponential or power
//	quotient of the floor division

8 Relational Operators

Operator	Notes
==	equality
!=	not equal to
> >=	greater than, greater than or equal to
< <=	less than, less than or equal to

9 Boolean Expression

Boolean Expression	Notes
a and b	logical and
a or b	logical or
not a	logical not

10 Iteration

while loop	for loop
while	for i in range(n):
conditions(s):	<statement(s)></statement(s)>
<statement(s)></statement(s)>	for record in records:
	<statement(s)></statement(s)>

11 Selection

Туре 1	Туре 2	Туре 3
if condition(s): <statement(s)></statement(s)>	<pre>if condition(s): <statement(s)> else: <statement(s)></statement(s)></statement(s)></pre>	<pre>if condition(s): <statement(s)> elif condition(s): <statement(s)> else: <statement(s)></statement(s)></statement(s)></statement(s)></pre>

12 Built-in Functions

(a) Basic Functions

abs()	chr()	float()	input()	int()	
ord()	print()	range()	round()	str()	
format()					

(b) Mathematical Functions

ceil()	exp()	fabs()	floor()	log()	
max()	min()	pow()	sqrt()	trunc()	

(c) String Functions

endswith()	find()	isalnum()	isalpha()	isdigit()
islower()	isspace()	isupper()	len()	lower()
startswith()	upper()			

13 Reserved Words

Reserved words cannot be used as identifiers. They are part of the syntax of the language.

False	None	True	and	as	
assert	break	class	continue	def	
del	elif	else	except	finally	
for	from	global	if	import	
in	is	lambda	nonlocal	not try	
or	path	raise	return		
while	with	yield			