SECTION A (50 MARKS)

	increased/greater force F (for greater moment) [1]
3a)	$P = \frac{E}{t} \times \frac{100}{85} = \frac{75 \times 10 \times 100}{8.5} \times \frac{100}{85}$ [1] = 1.04 × 10 ⁴ W [1]
3b)	$\frac{1}{2} \times 75 \times v^2 = 75 \times 10 \times 41 $ [1] v = 28.6m/s[1]
3ci)	Gravitational Potential Energy + Kinetic Energy [1] → Elastic Potential Energy (+ heat energy in rope) [1]
3cii)	Gain in G.P.E = Loss in K.E = 75 × 10 × 73 = 54800J [1]
4a)	$P = h\rho g + P_{atm}$ $P = (0.400)(1000)(10) + 100000$ [1] [1]
	P = 104000 Pa
4bi)	 Molecules move slower [1] Collide less frequently [1] with wall Force on wall decreases [1]
4bii)	Water level on left side is higher than level on the right [1]
5a)	$Q = mc\Delta\theta$ Q = (0.2)(4600)(65-10) [1] Q = 50600J [1]
5b)	$m \times 2.2 \times 10^{6} + [m \times 4200 \times (100 - 65)] = 50600$ [1] [1] [1] m = 0.0216 kg [1]
50)	Steam contains more (latent) heat energy [4] then water
	Specific latent heat of vaporisation is much greater than [1] specific heat capacity of water
6a)	Point at which rays converge that were initially parallel to principal axis of lens [1]

6bi) 6bii)	bject Fig. 6.1
6c)	Less than focal length OR between point F and lens [1]
6d)	Converging
7ai)	<caption></caption>
7aii)	Electrons are attracted and move towards the rod [1] and cluster on the left side of K since unlike charges attract, leaving behind induced positive charges on the right side of L. [1]
7bi)	Electrons move and redistribute themselves [1]
7bii)	Neutralised [1]
7c)	Place it over intense flame [1]

8a)	Work done to drive a unit charge across an entire circuit [1]
8bi)	$\varepsilon = \frac{E}{Q} = \frac{1.6 \times 10^5}{1.8 \times 10^4}$ $\varepsilon = 8.9V [1]$
8bii)	$I = \frac{Q}{t} = \frac{1.80 \times 10^5}{1.3 \times 10^5}$ I = 0.14A [1]
8ci)	$E = \frac{15}{45} \times 1.1 \times 10^{5} [1]$ $E = 3.7 \times 10^{4} J [1]$
8cii)	Extra resistance in circuit from wires, ammeters, cells [1]

SECTION B (30 MARKS)

9a)	 Equal in magnitude and opposite in direction [1] On escaping gas from rocket [1]
9b)	The velocity of the rocket increases/accelerates from 0 to 0.80s. This shows that the resultant force is upwards, hence lift is present and greater than weight. [1] After 0.8s, acceleration is negative [1] . Hence, resultant force is downward, due to weight only and thus there is no lift. [1]
9c)	 Since rocket 2 has higher acceleration, it is likely to have a smaller mass. F_{net} = Lift force - weight and if lift force is the same, then F_{net} and acceleration will be larger. [1]
9di)	1.40s [1]
9dii)	$h_{max} = \frac{1}{2} \times 10 \times (2.4 - 1.4)$ [1] $h_{max} = 5.0m$ [1]
10ai)	(imaginary) line on a wave that joins all peaks of a wave [1]
10aii)	Transfer of energy from one point to another through vibrations [1] without transferring matter. [1] The direction of wave motion is perpendicular to the direction of vibration of water molecules. [1]
10bi)	Difference: Different amplitude [1] Similarity: Same frequency [1]

10bii)	1. $f = \frac{1}{T} = \frac{1}{300 \times 10^{-3}}$ [1]
	f = 3.33Hz [1]
	2. $v = f\lambda$ $0.20 = 3.33\lambda$ [1] $\lambda = 0.0601m$ [1]
11ai)	The magnetic field of the magnets and magnetic field of current in wire interact and produce a force. [1]
11aii)	Fleming's left hand rule. Direction of force by thumb, direction of magnetic field by index finger and direction of current by second (middle) finger are perpendicular to one another. [3]
11b)	 There is no force F or it disappears/becomes equal to 0 [1] Wire is magnetically screened/shielded by iron tube [1]
11ci)	 Currents in vertical sides in opposite directions [1] Forces on vertical sides in opposite directions resulting in moments acting on coil [1]
11cii)	Current reverses direction in the coil every half a rotation. The force acting on each side of the coil reverses too, to keep the direction of the moment the same. [2]