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Answer ALL the questions  

 

1       (a) The function 𝑓 is defined, for all values of 𝑥, by 𝑓(𝑥) = (2𝑥 − 𝑥2)𝑒𝑥. 

     Find the range of values of 𝑥 such that 𝑓(𝑥) is a decreasing function.   [4] 

     𝑓′(𝑥) = (2 − 2𝑥)𝑒𝑥 + (2𝑥 − 𝑥2)𝑒𝑥 

    = 𝑒𝑥(2 − 𝑥2)      B1 

     Decreasing Function: 

     𝑓′(𝑥) < 0        

     𝑒𝑥(2 − 𝑥2) < 0      M1 

     Since 𝑒𝑥 > 0,  

   2 − 𝑥2 < 0 

     𝑥2 − 2 > 0 

     (𝑥 + √2)(𝑥 − √2) > 0     M1 

     𝑥 < −√2     𝑥 > √2   A1 

 

(b) The gradient function of the curve is 2(𝑝 + 1)𝑥 + 2, where 𝑝 is a constant. 

Given that the tangent to the curve at (2 , −2) is parallel to 𝑦 + 2𝑥 − 5 = 0, find 

the value of 𝑝.         [3] 

 

    
𝑑𝑦

𝑑𝑥
= 2(𝑝 + 1)𝑥 + 2       

 

    2(𝑝 + 1)𝑥 + 2 = −2     M1 

    (𝑝 + 1)𝑥 = −2      M1 

     

    When 𝑥 = 2, 

    2𝑝 + 2 = −2        

    𝑝 = −2       A1 
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2       The diagram shows a chocolate bar in the form of a triangular prism and the cross-

section of the chocolate bar is an isosceles triangle with 𝐴𝐵 = 𝐴𝐶.  

 𝑀𝐶 = (√2 +
1

2
) cm and ∠𝐴𝐶𝐵 = 45°.  

 

 

 

 

 

 

 

 

 

 

      

 

(a) Find the exact length of 𝑨𝑪.       [3] 

 

𝐜𝐨𝐬 𝟒𝟓° =
√𝟐+

𝟏

𝟐

𝑨𝑪
       M1 

𝑨𝑪 =
𝟐(√𝟐+

𝟏

𝟐
)

√𝟐
        

      =
𝟐√𝟐+𝟏

√𝟐
×

√𝟐

√𝟐
      M1 

      = 𝟐 +
√𝟐

𝟐
 or 

𝟒+√𝟐

𝟐
     A1 

   

(b) Given that the volume of the chocolate bar is (𝟐𝟓 + 𝟐𝟐√𝟐)𝐜𝐦𝟑, find the length of 

𝑨𝑫 in the form (𝒂 + 𝒃√𝟐) cm, where 𝒂 and 𝒃 are integers.   [4] 

 

Vol =
𝟏

𝟐
× (

𝟒+√𝟐

𝟐
) × (

𝟒+√𝟐

𝟐
) × 𝑨𝑫    M1 

𝟐𝟓 + 𝟐𝟐√𝟐 =
𝟗+𝟒√𝟐

𝟒
𝑨𝑫  

𝑨𝑫 =
𝟐𝟓+𝟐𝟐√𝟐

𝟗+𝟒√𝟐

𝟒

        

       =
𝟏𝟎𝟎+𝟖𝟖√𝟐

𝟗+𝟒√𝟐
×

𝟗−𝟒√𝟐

𝟗−𝟒√𝟐
     M1 

       =
𝟗𝟎𝟎−𝟒𝟎𝟎√𝟐+𝟕𝟗𝟐√𝟐−𝟕𝟎𝟒

𝟒𝟗
 

       =
𝟏𝟗𝟔+𝟑𝟗𝟐√𝟐

𝟒𝟗
      M1 

       = 𝟒 + 𝟖√𝟐      A1 

            

  

C M B 

D 

A 

 

 cm 
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The diagram shows a circle, centre O, with diameter AB. The points D and F lie on the 

circle. The point E is such that EB and EF are tangents to the circle. 

  

(a)  Given that the points 𝐶 and 𝐷 are midpoints of 𝐵𝐸 and 𝐴𝐸 respectively, prove 

that angle 𝐷𝐶𝐸 = 90°.        [3] 

 

  ∠𝐴𝐵𝐶 = 90° ( tangent perpendicular radius)  M1 

  𝐷𝐶 parallel 𝐴𝐵 (mid point theorem)   M1 

  Angle 𝐷𝐶𝐸 = 90° (corresponding angles)   A1 

 

 (b)  Given that triangle BEF is equilateral, prove that ∠𝐵𝐸𝐹 = ∠𝐵𝐴𝐹.  [2] 

 

  ∠𝐸𝐵𝐹 = ∠𝐵𝐴𝐹 (alternate segment theorem)  M1 

   

  Since ∠𝐸𝐵𝐹 = ∠𝐵𝐸𝐹, 

  ∠𝐵𝐸𝐹 = ∠𝐵𝐴𝐹 (shown)     A1 

 

4 (a)    Find the remainder when 6𝑥3 − 13𝑥2 + 17𝑥 − 6 is divided by 2𝑥 − 1. [2] 

        When 𝑥 =
1

2
, 

         Remainder = 6 (
1

2
)

3

− 13 (
1

2
)

2

+ 17 (
1

2
) − 6  M1 

      = 0      A1 

 

 

 

 

 

 

 

 

A 
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 (b)    Show that there is only one real root of the equation  

                     6𝑥3 − 13𝑥2 + 17𝑥 − 6 = 0.       [3] 

         (2𝑥 − 1)(6𝑥2 − 10𝑥 + 12) = 0    B1 

          𝑥 =
1

2
    6𝑥2 − 10𝑥 + 12 = 0 

 

      3𝑥2 − 5𝑥 + 6 = 0 

       

      Discriminant:  

      𝑏2 − 4𝑎𝑐 = 25 − 4(3)(6) 

            = −47 B1 

       Since −47 < 0,           

3𝑥2 − 5𝑥 + 6 = 0 has no real roots, hence equation has only 1 real root which is 

𝑥 =
1

2
.       B1 

 
5 Solve the following equations. 

(a)     5𝑥 − 5
𝑥

2
+1 = 6,         [3] 

          

        Let 𝑦 = 5
𝑥

2 

        𝑦2 − 5𝑦 − 6 = 0      M1 

         𝑦 = 6   𝑦 = −1 (reject)  A1 

         
𝑥

2
lg 5 = lg 6 

        𝑥 = 2.23       B1 

 

 

 

 

 

 

 

 

 

 

 



 

7 

 

(b)  2 lg(𝑥 − 3) − lg(𝑥 + 7) =
1

log100 10
.       [4] 

         lg
(𝑥−3)2

𝑥+7
=

lg 100

lg 10
      M2 

         100 =
(𝑥−3)2

𝑥+7
      M1 

          𝑥2 − 106𝑥 − 691 = 0      

         𝑥 = 112 or 𝑥 = −6.16 (rej)    A1 

 

6 (a)    State the values between which the principal value of sin−1 𝑥 must lie.  [1] 

   −90° ≤ sin−1 𝑥 ≤ 90°  

  −
𝜋

2
≤ sin−1 𝑥 ≤

𝜋

2
 

 

 (b)    Find the principal value of tan−1 1 in radian in exact form.   [1] 

 

   Principal value =
𝜋

4
 

 

7  Given that cot 𝜃 = −
3

4
  and that tan 𝜃 and cos 𝜃 have opposite signs, without 

evaluating 𝜃, find the exact values of each of the following.      

     

(a) cos(−𝜃),          [2] 

tan 𝜃 = −
4

3
 , lies in 4th quadrant    M1 

cos(−𝜃) = cos 𝜃   

           =
3

5
      A1 

   

(b)  sin 2𝜃          [2] 

= 2 sin 𝜃 cos 𝜃  

= 2 (−
4

5
) (

3

5
)       M1 

= −
24

25
        A1 
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8. The approximate mean distance x (in millions of kilometres) from the centre of the Sun 

and the period of the orbit T (in Earth years) are recorded in the table. 

 Mercury Venus Mars Uranus 

x 58 108 228 2871 

T 0.24 0.62 1.88 84.11 

It is believed that the planets orbiting around the Sun obey a law of the form nkxT = , 

where k and n are constants. 

(a) Express the equation in a form suitable for drawing a straight line graph and 

draw the graph using appropriate scaling on both axes.   [4] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lg 𝑇 = 𝑙𝑔𝑘 + 𝑛𝑙𝑔𝑥 
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(b) Use your graph to estimate the value of k and of n, to two significant figures. [3] 

 

Lg k = -3.2 

k = 0.00063  (0.00063 to 0.00079) 

n = 
2−9−3.2)

3.5−0
= 1.49 = 1.5     (1.4 to 1.6) 

 

 

 

 

 

 

 

 

 

 

(c) Using the graph, find the orbital period of the Earth, if the distance between the 

Earth and the Sun is about .106.149 6 km  Give your answer correct to the 

nearest integer.         [2] 

 

lg 149.6 = 2.17 = lg x 

 lg T = 0 ⇒ T = 1        (0.79 to 1.25) 

 

 

 

 

(d) If the orbital period of the Jupiter is 11.86 Earth years, estimate the distance of 

the Jupiter from the Sun in km using your graph.    [2] 

lg 11.86 = 1.07 

lg x = 2.9 = 794000000 km  (631000000 to 1000000000 km) 
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9. (a)    Express 
2𝑥3+2𝑥2−7𝑥+4

𝑥(𝑥−1)2   in partial fractions.     [5] 

= 2 +
6𝑥2−9𝑥+4

𝑥(𝑥−1)2         B1 

 

Let 
6𝑥2−9𝑥+4

𝑥(𝑥−1)2 =
𝐴

𝑥
+

𝐵

𝑥−1
+

𝐶

(𝑥−1)2 

6𝑥2 − 9𝑥 + 4 = 𝐴(𝑥 − 1)2 + 𝐵𝑥(𝑥 − 1) + 𝐶𝑥  

 

When 𝑥 = 0, 

4 = 𝐴         B1 

 

When 𝑥 = 1, 

6 − 9 + 4 = 𝐶  

𝐶 = 1         B1 

 

When 𝑥 = −1, 

6 + 9 + 4 = 4(4) + 2𝐵 − 1  

2𝐵 = 4  

𝐵 = 2         B1 

 

2𝑥3+2𝑥2−7𝑥+4

𝑥(𝑥−1)2 = 2 +
4

𝑥
+

2

𝑥−1
+

1

(𝑥−1)2     B1 
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(b)    Hence evaluate ∫
4𝑥3+4𝑥2−14𝑥+8

3𝑥(𝑥−1)2  𝑑𝑥
4

2
.      [4] 

 

∫
4𝑥3+4𝑥2−14𝑥+8

3𝑥(𝑥−1)2
 𝑑𝑥

4

2
=

2

3
∫

2𝑥3+2𝑥2−7𝑥+4

𝑥(𝑥−1)2
 𝑑𝑥

4

2
     M1 

         =
2

3
∫ [2 +

4

𝑥
+

2

𝑥−1
+

1

(𝑥−1)2]  𝑑𝑥
4

2
  

         =
2

3
[2𝑥 + 4 ln 𝑥 + 2 ln(𝑥 − 1) −

1

𝑥−1
]

2

4

  M1 

         =
2

3
[8 + 4 ln 4 + 2 ln 3 −

1

3
− 4 − 4 ln 2 − 2 ln 1 + 1] 

         =
2

3
[

14

3
+ 4 ln 2 + 2 ln 3]    M1 

         = 6.42      A1 

 

10. (a)    Find the range of values of 𝑘 for which the line 2𝑥 − 𝑦 = 5 intersects the curve     

      𝑥𝑦 = 𝑘𝑥 − 2 at two distinct points.        [4] 

𝑥(2𝑥 − 5) = 𝑘𝑥 − 2  

2𝑥2 − 5𝑥 − 𝑘𝑥 + 2 = 0       B1 

 

Intersects at 2 distinct points: 

    

(−5 − 𝑘)2 − 4(2)(2) > 0      M1 

𝑘2 + 10𝑘 + +9 > 0  

(𝑘 + 1)(𝑘 + 9) > 0  

 

𝑘 < −9    𝑘 > −1     A2 
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(b)    Find the smallest integer value of ℎ for which the graph 𝑦 = 2𝑥2 − 4𝑥 + ℎ lies 

entirely above the line 𝑦 = 3 for all values of 𝑥.     [3] 

 2𝑥2 − 4𝑥 + ℎ − 3 > 0 

 Curve lies above line: 

 𝑏2 − 4𝑎𝑐 < 0       M1 

 (−4)2 − 4(2)(ℎ − 3) < 0 

 8ℎ > 40 

 ℎ > 5        A1 

 smallest integer value of ℎ = 6     B1 

 

11. (a)    Prove the identity 
1+cos 𝜃

sin 𝜃
+

sin 𝜃

1+cos 𝜃
= 2cosec 𝜃.      [4] 

LHS =
1+cos 𝜃

sin 𝜃
+

sin 𝜃

1+cos 𝜃
 

     =
1+2 cos 𝜃+cos2𝜃+sin2𝜃

sin 𝜃(1+cos 𝜃)
     M2 

     =
2(1+cos 𝜃 )

sin 𝜃(1+cos 𝜃)
      M1 

     = 2cosec 𝜃       A1 

     = 𝑅𝐻𝑆  (shown) 

 

(b)    Hence, find all the angles from 0° ≤ 𝜃 ≤ 360° which satisfy the equation  

      
1+cos 2𝜃

sin 2𝜃
+

sin 2𝜃

1+cos 2𝜃
= tan 75°.       [3] 

2cosec 2𝜃 = tan 75°  

sin 2𝜃 =
2

tan 75°
        M1 

𝑏𝑎𝑠𝑖𝑐 𝑎𝑛𝑔𝑙𝑒 = sin−1 2

tan 75°
  

    = 32.404858°     M1 

 

2𝜃 = 32.404858°, 180° − 32.404858°, 32.404858° + 360°, 540° − 32.404858°  

𝜃 = 16.2°, 73.8°, 196.2°, 253.8°        A1 
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12. Find the derivatives of each of the following, simplifying your answer. 

(a) 𝑦 = 3 (1 −
𝑥

3
)

4

         [1] 

𝑑𝑦

𝑑𝑥
= 12 (−

1

3
) (1 −

𝑥

3
)

3

  

 = −4 (1 −
𝑥

3
)

3

 

 

(b) 𝑓(𝑥) = (2 − 3𝑥)(√1 − 4𝑥)       [3] 

𝑓′(𝑥) = −3(√1 − 4𝑥) +
1

2
(−4)(2 − 3𝑥)(1 − 4𝑥)−

1

2   M1 

      = (1 − 4𝑥)−
1

2 [−3(1 − 4𝑥) − 4 + 6𝑥]   M1 

      =
18𝑥−7

√1−4𝑥
       A1 

 

(c) 
𝑑𝑦

𝑑𝑥
=

2(3𝑥−2)

4+𝑥
         [2] 

𝑑2𝑦

𝑑𝑥2 =
6(4+𝑥)−(6𝑥−4)

(4+𝑥)2        M1 

  =
28

(4+𝑥)2       A1 
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13.  

 

 

 

 

 

 

 

The diagram shows a glass window 𝐴𝐵𝐶𝐷𝐸𝐹, consisting of a rectangle 𝐴𝐵𝐸𝐹 of 

height 3𝑥 cm and width 𝑦 cm and a trapezium 𝐵𝐶𝐷𝐸 in which 𝐶𝐷 = 𝑥  cm and  

𝐵𝐶 = 2𝑦 cm. 𝐴𝐵𝐶 is a straight line and 𝐷𝐸 = 10√2  cm.  

Given that 𝑥 can vary,  

(a) show that the area of the glass window 𝑆 = 7𝑥(√50 − 𝑥2),   [3] 

Looking at triangle,  

 4𝑦2 + 4𝑥2 = 200        

 𝑦2 + 𝑥2 = 50        B1 

 

 Total area 𝐴 = 3𝑥𝑦 +
1

2
(𝑥 + 3𝑥)(2𝑦)    M1 

           = 7𝑥(√50 − 𝑥2)     A1 

 

(b) find the value of 𝑥 for which 𝑆 has a stationary value and determine whether this 

value of 𝐴 is a maximum or a minimum.      [5]  

  

 

 
𝑑𝑆

𝑑𝑥
= 7(√50 − 𝑥2) +

1

2
(−2𝑥)(7𝑥)(50 − 𝑥2)−

1

2 

      = (50 − 𝑥2)−
1

2[7(50 − 𝑥2) − 7𝑥2] 

      =
350−14𝑥2

√50−𝑥2
        B1 

 

Stationary value of 𝑆: 

𝑑𝑆

𝑑𝑥
= 0          M1 

350 − 14𝑥2 = 0  

A B 

D 

y cm C 2y cm 

F E 

10√2 cm 

x cm 

3x cm 
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𝑥 = 5    𝑥 = −5 (rej)     A1 

 

 

 𝑥 = 4.9 𝑥 = 5 𝑥 = 5.1 

𝑑𝑆

𝑑𝑥
 

2.72 0 -2.89 

shape    

 

Proof B1 (can be 1st or 2nd derivative) 

 

When 𝑥 = 5, 𝑆 is a maximum      B1 
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14. It is given that 𝑓(𝑥) is such that 𝑓′(𝑥) = cos 4𝑥 − sin 2𝑥. Given also that 𝑓 (
𝜋

2
) =

1

4
 ,  

show that  𝑓′′(𝑥) + 4𝑓(𝑥) = 3 − 3 sin 4𝑥.      [5] 

 

𝑓′′(𝑥) = −4 sin 4𝑥 − 2 cos 2𝑥      B1 

 

𝑓(𝑥) = ∫(cos 4𝑥 − sin 2𝑥)  𝑑𝑥  

       =
sin 4𝑥

4
+

cos 2𝑥

2
+ 𝑐      B1 

When 𝑥 =
𝜋

2
, 

1

4
= −

1

2
+ 𝑐  

𝑐 =
3

4
           

𝑓(𝑥) =
sin 4𝑥

4
+

cos 2𝑥

2
+

3

4
       B1 

 

𝑓′′(𝑥) + 4𝑓(𝑥) = −4 sin 4𝑥 − 2 cos 2𝑥 + 4 [
sin 4𝑥

4
+

cos 2𝑥

2
+

3

4
]  M1 

   = −4 sin 4𝑥 − 2 cos 2𝑥 + sin 4𝑥 + 2 cos 2𝑥 + 3 

   = 3 − 3 sin 4𝑥 (shown)    A1 


