1	С	11	D	21	В
2	Α	12	С	22	Α
3	В	13	D	23	C
4	В	14	В	24	Α
5	Α	15	С	25	D
6	В	16	D	26	Α
7	D	17	В	27	В
8	Α	18	D	28	В
9	Α	19	D	29	D
10	В	20	С	30	В

Qn	Ans	Explanation			
1	С	Smartphone is about 100 to 200 grams.			
		mass ≈ 0.150 kg			
		weight = mg ≈ 0.150 × 10 = 1.5 N = 150 × 10 ⁻² N = 150 cN			
2	Α	Choose an equation that is mostly base quantities. For quantities that are not base			
		quantity, replace it with a combination of base quantities that is equivalent to it.			
		Using $F = BIL$,			
		[F] $[ma]$ kg(m s ⁻²)			
		$[B] = \frac{[I]}{[I][I]} = \frac{[I][I]}{[I][I]} = \frac{S(-I)}{A} = kg A^{-1} S^{-2}$			
3	В	Weight is acting vertically downwards.			
		Air resistance is present and since the ball is moving horizontally rightwards at that			
		instant of time, the drag force due to air resistance is acting leftwards.			
		Hence, the resultant force is both leftwards and downwards.			
4	В	As the collision is elastic, the speed of approach of the objects before the collision			
		should be equal to the speed of separation of the objects after the collision.			
		$U_{\rm X} - U_{\rm Y} = V_{\rm Y} - V_{\rm X}$			
		$1.0v - 0 = 0.67v - v_{\rm X}$			
		$v_{\rm x} = -0.33v$			
5	Δ	Weight W is the force by the Earth on the brick Hence, by Newton's 3 rd law, the force			
Ŭ	~	paired with W is the force by the brick on the Earth.			
6	В	The upthrust on the ball is 0.25 of the weight of the ball.			
		By Archimedes' principle, the upthrust is equivalent to the weight of the volume of			
		water being displaced.			
		$U = m_{water displaced} q = V \rho_{water} q$			
		$0.25m$ $a - V_{a}$ a			
		$0.25 m_{\text{ball}} \mathbf{y} = \mathbf{v} p_{\text{water}} \mathbf{y}$			
		0.25(100) = V(1.0)			
		$V = 25 \text{ cm}^3$			
		Hence, volume of ball will be double of that and is 50 cm ³ .			
		Common Mistake: Some students chose A because they did not realise that the hollow			
		ball was only half submerged.			
7	D	The stored elastic potential energy is the area under force-extension graph.			

Qn	Ans	Explanation		
12	С	Need to change the molar mass into kg.		
		$\langle c \rangle^2$ used in formula is mean square speed. Need to square root $\langle c \rangle^2$ to obtain root-		
		mean-square (r.m.s.) speed.		
		Multiplying $pV = \frac{1}{3}Nm < c^2 > = nRT$ by a factor of $\frac{3}{2}$ gives:		
		$\frac{1}{2}m\langle c\rangle^2 = \frac{3}{2}nRT = \frac{3}{2}pV$		
		$_{1}$ $_{2}$ $_{3}\rho V = 3(1.0 \times 10^5)(10 \times 3 \times 4)$		
		$\langle c \rangle^2 = \frac{G P V}{nM} = \frac{V}{5000 \times 0.029}$		
		$/c = 498 \text{ m s}^{-1}$		
10				
13	D	The thermal energy supplied is used to increase the water's temperature and		
		$E = mc\Delta\theta + mL_{\rm v} = 5(4190 \times 70 + 2260 \times 10^3)$		
		$= 1.28 \times 10^7 J$		
14	В	No heat transfer ($Q = 0$) or no work done on the gas ($W = 0$) suggests that the change		
		in internal energy of the gas is zero.		
		Internal energy is the sum of of a random distribution of kinetic and potential energies		
		associated with the molecules of the system (i.e. inter-molecular kinetic and potential		
15	С	There are only conversion of energies between potential energy and kinetic energy.		
	-	When the potential energy decreases, kinetic energy increases. Hence the kinetic		
		energy line should be mirrored horizontally to the potential energy.		
16	D	$\lambda = \frac{c}{c} = \frac{3.0 \times 10^8}{5.0 - 4.0^{14}} = 0.60 \times 10^{-6} \text{ m}$		
		$f = 5.0 \times 10^{11}$		
		$\frac{\Delta \varphi}{2\pi} = \frac{\Delta x}{2}$		
		2π λ (15)		
		$\Delta\phi = 2\pi \left(\frac{1.5}{0.60} - 2\right)$		
		$\Delta \phi = \pi$		
17	В	At 45°, the intensity of light is the highest:		
		$I = I_0 \left[\cos^2 \theta\right] \left[\cos^2 \left(90^\circ - \theta\right)\right]$		
		At 90°, the intensity drops to zero.		
18	D	$\rho = \lambda$		
		$v_{\min} - \overline{b}$		
		$x = 620 \times 10^{-9}$		
		$\frac{1}{5.7 \times 10^{16}} - \frac{1}{50 \times 10^{-2}}$		
		$x = 7.1 \times 10^{10}$ m		
19	D			

Qn	Ans	Explanation		
26	Α	By Faraday's Law,		
		$\varepsilon = \left \frac{\Delta(N\phi)}{\Delta t} \right $		
		$NB\pi R^2 - 0$		
		$=\frac{\Delta t}{\Delta t}$		
		$(3000)(1.8 \times \pi (0.010)^2) - 0$		
		$=\frac{(1)}{0.060}$ = 28.3 V		
27	В	$N_{\rm s}$ $V_{\rm s}$ 16		
		$\frac{3}{N_{\rm p}} = \frac{3}{V_{\rm p}} = \frac{1.88}{1.88}$		
		I _P 16		
		$\frac{1}{I_{s}} = \frac{1}{1.88}$		
		$L = 0.32 \times \frac{1.88}{2} = 0.0376 \text{ A}$		
	_	16		
28	В			
		energy		
		~~ 540nm		
		n = 2		
		4TUTIM ~ 440 mm		
		n = 1		
		$E_{2,1} = E_{2,2} + E_{2,1}$		
		1 1 1 (- hc)		
		$\frac{1}{\lambda_{3\to 1}} = \frac{1}{\lambda_{3\to 2}} + \frac{1}{\lambda_{2\to 1}} \qquad \left(E_{\text{photon}} = \frac{1}{\lambda} \right)$		
		$\lambda_{2,14} = \left(\frac{1}{1} + \frac{1}{1}\right)^{-1} = 252 \text{nm}$		
		(440 590)		
29	D	Given that the two beams have the same frequency, the energy of each photon from		
		To increase intensity and hence total energy per unit time in a beam of light, there must		
		be larger quantity of photons.		
30	В	$E = \Delta m \cdot c^{2} = (136.90709 - 136.90583 - 5.49 \times 10^{-4})(1.66 \times 10^{-27})(3 \times 10^{8})^{2}$		
		$= 1.06 \times 10^{-13} \text{ J}$		