2024 Year 5 H2 Math Practice Paper 1 Suggested Solution

1 chocolate and walnut cakes respectively.
$$5b+3c+2w=52 \mathbb{M}$$
 (1) $3b+4c+5w=68 \mathbb{M}$ (2) $4b+8c+2w=75 \mathbb{M}$ (3) Using GC, $b=4.50, c=5.50$ and $w=6.50$

$$y = \frac{x^2}{4} + 4$$

$$y = \frac{x^2}{4} + 4$$

$$y = \frac{x^2}{4} + 4$$

$$y = \frac{(2x)^2}{4} + 4$$

$$y = x^2 + 4$$

$$y = x^2 + 4$$

$$y = -x^2$$
Equation of the original curve: $y = -x^2$

$$C': \text{ Replace } y \text{ by } -y$$

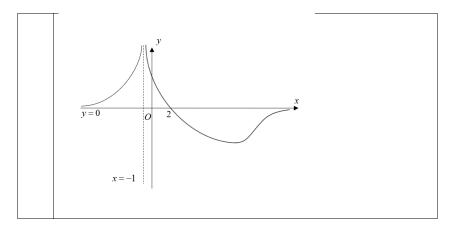
$$B': \text{ Replace } x \text{ by } 2x$$

$$A': \text{ Replace } y \text{ by } y - 4$$

3(a)	For $y = \frac{1}{f(x)}$ to be increasing, $y = f(x)$ will be decreasing.
	Range of values: $x \ge 2$.
(h)	

Commented [OMFJ1]: SY - vertical asymptote, origin

Commented [KSY2R1]: Is this ok?



4(a) Since f(1) = f(4) = 5, f is not one-one. Hence, f does not have an inverse.

(b) Let
$$y = f(x) = \frac{x^2 + 4}{x}$$
, $0 < x \le 2$
 $xy = x^2 + 4$
 $x^2 - yx + 4 = 0$
 $\left(x - \frac{y}{2}\right)^2 - \frac{y^2}{4} + 4 = 0$
 $\left(x - \frac{y}{2}\right)^2 = \frac{y^2 - 16}{4} = 0$
 $\left(x - \frac{y}{2}\right)^2 = \frac{y^2 - 16}{4}$
 $x - \frac{y}{2} = \pm \sqrt{\frac{y^2 - 16}{4}}$
 $x = \frac{y \pm \sqrt{y^2 - 16}}{2}$
Since $0 < x \le 2$, $x = \frac{y - \sqrt{y^2 - 16}}{2}$
Hence, $f^{-1}(x) = \frac{x - \sqrt{x^2 - 16}}{2}$, $x \ge 4$.

Hence,
$$f^{-1}(x) = \frac{x - \sqrt{x^2 - 16}}{2}, x \ge 4$$

$$D_{\mathbf{f}^{-1}} = [4, \infty)$$

Alternative (to check plus or minus):

When
$$x = 1$$
, $f(x) = \frac{1^2 + 4}{1} = 5$
When $y = 5$,

$$x = \frac{5 + \sqrt{5^2 - 16}}{2} = 4 \text{ (rej +ve)}, \quad x = \frac{5 - \sqrt{5^2 - 16}}{2} = 1$$

Hence $f^{-1}(x) = \frac{x - \sqrt{x^2 - 16}}{2}, \quad x \ge 4.$

5
$$bx^2-2bx$$

$$=b(x^2-2x)$$

$$=b((x-1)^2-1)$$

$$=b(x-1)^2-b$$

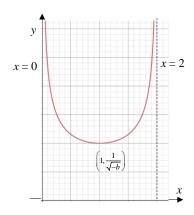
Maximum value at -b when x = 1.

Hence turning (minimum) point is at $\left(1, \frac{1}{\sqrt{-b}}\right) y = \frac{1}{\sqrt{bx^2 - 2bx}}$

$$bx^2 - 2bx = 0$$

$$bx(x-2) = 0$$

$$x = 0$$
 or $x = 2$



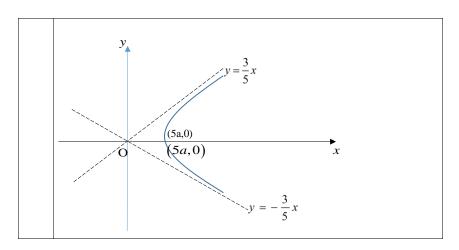
Line of symmetry: x = 1.

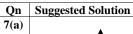
6(i)
$$x = 5a \sec \theta, y = 3a \tan \theta$$

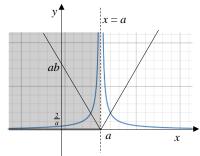
$$\tan^2\theta + 1 = \sec^2\theta$$

$$(\frac{y}{3a})^2 + 1 = (\frac{x}{5a})^2, x \ge 5a$$

(ii)







$$\begin{array}{c|c} \textbf{(b)} & \frac{2}{|x-a|} = b |x-a| \end{array}$$

$$(x-a)^2 = \frac{2}{b}$$

$$x - a = \pm \sqrt{\frac{2}{b}}$$

$$x = a \pm \sqrt{\frac{2}{b}}$$

|x-a| $(x-a)^2 = \frac{2}{b}$ $x-a = \pm \sqrt{\frac{2}{b}}$ $x = a \pm \sqrt{\frac{2}{b}}$ Hence, for $\frac{2}{|x-a|} > b|x-a|$.

$$\left| a - \sqrt{\frac{2}{b}} < x < a + \sqrt{\frac{2}{b}}, \quad x \neq a \right|$$

Commented [CMYE3]: With graph, to accept answer with symmetry deduction, to award full credit

Qn	Suggested Solution		
8(i)			
	$\cos 3x = 1 - \frac{1}{2!} + \frac{1}{4!} + \dots = 1 - \frac{1}{2}x + \frac{1}{8}x + \dots$		
	$\ln(1+\cos 3x) = \ln\left(1 + \left(1 - \frac{9}{2}x^2 + \frac{27}{8}x^4 + \dots\right)\right)$		
	$= \ln 2 \left(1 - \frac{9}{4} x^2 + \frac{27}{16} x^4 + \dots \right)$		
	$= \ln 2 + \ln \left(1 - \frac{9}{4} x^2 + \frac{27}{16} x^4 + \dots \right)$		
	$= \ln 2 + \left(-\frac{9}{4}x^2 + \frac{27}{16}x^4 + \dots\right) - \frac{\left(-\frac{9}{4}x^2 + \frac{27}{16}x^4 + \dots\right)^2}{2} + \dots$		
	$= \ln 2 - \frac{9}{4}x^2 + \frac{27}{16}x^4 - \frac{81}{32}x^4 + \dots$		
	$= \ln 2 - \frac{9}{4}x^2 - \frac{27}{32}x^4 + \dots$		
(ii)	$\int_0^{0.5} x \ln(1 + \cos 3x) dx = \int_0^{0.5} x \left(\ln 2 - \frac{9}{4} x^2 - \frac{27}{32} x^4 + \dots \right) dx$		
	$= \int_0^{0.5} \left((\ln 2) x - \frac{9}{4} x^3 - \frac{27}{32} x^5 + \dots \right) dx$		
	$= \left[(\ln 2) \frac{x^2}{2} - \frac{9}{16} x^4 - \frac{9}{64} x^6 + \dots \right]_0^{0.5}$		
	$\approx 0.04929 \text{ (5 d.p.)}$		
(iii)	Using GC, $\int_0^{0.5} x \ln(1 + \cos 3x) dx = 0.04900$ (5 d.p.)		
(iv)	y $x = 0.5$		
	$y = x \left(\ln 2 - \frac{9}{4} x^2 - \frac{27}{32} x^4 \right)$		
	r		
	O		
	$y = x \ln \left(1 + \cos 3x \right)$		
	From the diagram, it can be seen that the graphs of $y = x \ln(1 + \cos 3x)$ and		
	$y = x \left(\ln 2 - \frac{9}{4} x^2 - \frac{27}{32} x^4 \right)$ are close to each other mostly from $x = 0$ to $x = 0.5$. Hence,		
	the approximated value of $\int_0^{0.5} x \left(\ln 2 - \frac{9}{4} x^2 - \frac{27}{32} x^4 + \dots \right) dx$ from (ii) is approximately		
	equal to the actual value of $\int_{0}^{0.5} x \ln(1 + \cos 3x) dx = 0.04900$ (5 d.p.) in (iii).		

	Suggested Solution		
9a (i)			
	$= \frac{1}{4} \sum_{r=0}^{n} \left[\left(\frac{x+3}{4} \right)^{0} + \left(\frac{x+3}{4} \right)^{1} + \dots + \left(\frac{x+3}{4} \right)^{n} \right]$		
	$=\frac{1}{4}\left[\frac{1-\left(\frac{x+3}{4}\right)^{n+1}}{1-\frac{x+3}{4}}\right]$		
	$= \frac{1}{4} \left[\frac{1 - \left(\frac{x+3}{4}\right)^{n+1}}{\frac{1-x}{4}} \right]$		
	$= \frac{1}{1-x} \left[1 - \left(\frac{x+3}{4} \right)^{n+1} \right]$		
(ii)	Common ratio, r of G.P. = $\frac{x+3}{4}$		
	When $x = -5$, $r = \frac{-5+3}{4} = -\frac{1}{2}$.		
	Since $ r = \frac{1}{2} < 1$, the G.P. converges. Hence, the series $\sum_{r=0}^{n} \frac{(x+3)^r}{4^{r+1}}$ converges.		
	$\lim_{n \to \infty} \sum_{r=0}^{n} \frac{\left(-5+3\right)^{r}}{4^{r+1}} = \lim_{n \to \infty} \frac{1}{1-\left(-5\right)} \left[1 - \left(\frac{-5+3}{4}\right)^{n+1}\right]$		
	$=\lim_{n\to\infty}\frac{1}{6}\left[1-\left(-\frac{1}{2}\right)^{n+1}\right]$		
	$=\frac{1}{6}$		
(b)(i)	$= \frac{1}{6}$ $\sum_{r=6}^{2k} r(3r-2) = \sum_{r=6}^{2k} (3r^2 - 2r)$		
	$=3\left[\sum_{r=1}^{2k}r^2-\sum_{r=1}^{5}r^2\right]-2\sum_{r=6}^{2k}r$		
	$=3\left[\frac{2k}{6}(2k+1)(4k+1)-\frac{5}{6}(6)(11)\right]$		
	$-2\left(\frac{2k-6+1}{2}(6+2k)\right)$		
	= k(2k+1)(4k+1) - 165 - 2(2k-5)(3+k)		
	= k(2k+1)(4k+1) - 2(2k-5)(k+3) - 165		

Qn	Suggested Solution
10(a)	$\int \frac{1-3x}{1+0x^2} \mathrm{d}x$
	J 1+9X
	$= \int \frac{1}{1+9x^2} \mathrm{d}x - \int \frac{3x}{1+9x^2} \mathrm{d}x$
	$= \frac{1}{9} \int \frac{1}{\left(\frac{1}{3}\right)^2 + x^2} dx - \frac{1}{6} \int \frac{18x}{1 + 9x^2} dx$
	$= \frac{1}{3} \tan^{-1} (3x) - \frac{1}{6} \ln (1 + 9x^2) + c$
(b)	$x = 2\sin\theta \implies \frac{\mathrm{d}x}{\mathrm{d}\theta} = 2\cos\theta$
	$\int \frac{(x-1)^2}{\sqrt{4-x^2}} dx = \int \frac{(2\sin\theta - 1)^2}{\sqrt{4-4\sin^2\theta}} (2\cos\theta) d\theta$
	$\int \frac{(2\sin\theta - 1)^2}{2\cos\theta} (2\cos\theta) \ d\theta$
	$= \int 4\sin^2\theta - 4\sin\theta + 1 d\theta$
	$= \int 4\left(\frac{1-\cos 2\theta}{2}\right) - 4\sin \theta + 1 d\theta$
	$= \int 3 - 2\cos 2\theta - 4\sin \theta d\theta$
	$= 3\theta - \sin 2\theta + 4\cos \theta + c$
	$= 3\sin^{-1}\left(\frac{x}{2}\right) - \frac{x\sqrt{4 - x^2}}{2} + 2\sqrt{4 - x^2} + c$
(c)	$\frac{d}{dx} \left(\sin^{-1}(2x^2) \right) = \frac{4x}{\sqrt{1 - \left(2x^2\right)^2}}$
	$=\frac{4x}{\sqrt{1-4x^4}}$
	$\int (2x\sin^{-1}(2x^2))dx = x^2\sin^{-1}(2x^2) - \int \frac{4x^3}{\sqrt{1-4x^4}}dx$
	$= x^{2} \sin^{-1}(2x^{2}) + \frac{1}{4} \int \frac{-16x^{3}}{\sqrt{1 - 4x^{4}}} dx$
	$= x^2 \sin^{-1}(2x^2) + \frac{1}{4} \frac{\left(1 - 4x^4\right)^{\frac{1}{2}}}{\frac{1}{2}} + c$
	$= x^2 \sin^{-1}(2x^2) + \frac{1}{2} \left(1 - 4x^4\right)^{\frac{1}{2}} + c$

	G 4 1G 1 4					
Qn	Suggested Solution					
11 (i)						
= \$3747.68						
11	End of <i>r</i> th month	Amt in account				
(ii)	1	200(1.11)				
. /	2	$[200 + 200(1.11)](1.11) = 200(1.11) + 200(1.11)^2$				
	3					
	: the projected amo	Fount of money = $200(1.11) + 100(1.11)^2 + + 100(1.11)^n$ = $\frac{200(1.11)(1.11^n - 1)}{1.11 - 1}$				
		- 				
$=\frac{22200}{11}\left[\left(\frac{111}{100}\right)^n-1\right]$						
11 Projected amount of money in Carl's investment account at the end of one year						
(iii) $=\frac{22200}{11} \left[\left(\frac{111}{100} \right)^{12} - 1 \right] = $5042.33 \ (2 \text{ d.p.})$						
11	Lat n ha tha number	of months after Carl started his investment				
(iv						
)	22200 111 4 4500 (4.44)					
	Let $T_n = \frac{22200}{11} \left[\left(\frac{111^n}{100} \right) - 1 \right] - 1500(1.11)^n$					
	From GC,	$T_{13} = -5.937 < 0$				
	Trom GC,	$T_{13} = 3557 < 0$ $T_{14} = 215.41 > 0$				
		$T_{15} = 461.11 > 0$				
	So, Carl would have	ty has \$5.94 more in her account than Carl. more money in his account on the following day, ie. 1 Feb 2023.				
	On 31 Jan 2023, Car	1's projected amount in his account = $\frac{22200}{11} \left[\left(\frac{111}{100} \right)^{13} \right] - 1$				
	= \$3	5818.98				
	Betty's projected am	nount in her account = $1500(1.11^{13}) = 5824.92				
	On 1 Feb 2023, Carl Hence, Carl will hav	oney in his account than what Betty on 28 Feb 2023 's projected amount will increase to \$6018.98 > \$5824.92. e more money in his account than Betty has in hers on 1 Feb 2023.				
(v)	The amount of mone million and common	ey lost due to scam cases each year forms a GP with first term \$633.3 a ratio 0.95.				

∴ The estimated total amount of money lost due to scam cases
$$= \frac{633.3}{1-0.95} \text{ million}$$

$$= $12666 \text{ million}$$

Qn	Suggested Solutions		
12(a)	$u_{n+1} = 2u_n - k$, $u_1 = a = 4$,		
(i)	k = 1:		
(A) The population is always on the uptrend. Population will grow to in			
(B)	$u_1 = 4, \ k = 5$		
	$u_2 = 2(4) - 5 = 3$		
	$u_3 = 2(3) - 5 = 1$		
	$u_4 = 2(1) - 5 = -3 < 0$		
	The population will become extinct by 4th year		
(ii)	$u_2 = 2(4) - k = 8 - k$		
	$u_3 = 2u_2 - k = 2(8 - k) - k = 16 - 3k = 52$		
	$\therefore k = -12$		
(b)	$v_n = u_n - k$		
	$\frac{v_{n+1}}{v_n} = \frac{u_{n+1} - k}{u_n - k}$		
	n n		
	$=\frac{2u_n-k-k}{u_n-k}=2 \text{(a constant)}$		
	Thus v_n is a geometric progression		
	$v_n = v_1(2)^{n-1} = (u_1 - k)2^{n-1} = (a - k)2^{n-1}$		
	$u_n = v_n + k = (a - k)2^{n-1} + k$		
	$u_{n+1} = (a-k)2^n + k$		
(c)	$2^n \to \infty$ as $n \to \infty$		
	For population to stay stabilized as $n \to \infty$, $a - k = 0$, i.e. $a = k$		
(d)	Rewriting		
	$u_n = \left(a - k\right) 2^{n-1} + k$		
	$S = (a-k)\left[2^4 + 2^9 + \dots + 2^{79}\right] + 16k$		
	$=\frac{2^4\left[(2^5)^{16}-1\right]}{2^5-1}(a-k)+16k$		
	$=\frac{16}{31} \left[2^{80} - 1 \right] (a-k) + 16k$		

Commented [OMFJ4]: amended parts

13(a)
$$\int_{0}^{1} 2ex - 2x^{2}e^{2-x} dx = 2e \left[\frac{x^{2}}{2} \right]_{0}^{1} - 2 \int_{0}^{1} x^{2}e^{2-x} dx$$

$$= e - \left\{ 2 \left[x^{2} \frac{e^{2-x}}{-1} \right]_{0}^{1} - 2 \int_{0}^{1} \frac{e^{2-x}}{-1} (2x) dx \right\}$$

$$= e + 2 \left[x^{2}e^{2-x} \right]_{0}^{1} - 4 \int_{0}^{1} e^{2-x} (x) dx$$

$$= e + 2 \left[x^{2}e^{2-x} \right]_{0}^{1} - 4 \left[\left[x \frac{e^{2-x}}{-1} \right]_{0}^{1} - \int_{0}^{1} \frac{e^{2-x}}{-1} (1) dx \right]$$

$$= e + 2 \left[x^{2}e^{2-x} \right]_{0}^{1} + 4 \left[xe^{2-x} \right]_{0}^{1} - 4 \left[\frac{e^{2-x}}{-1} \right]_{0}^{1}$$

$$= 11e - 4e^{2}$$

(b)(i)
$$x^2 + (y-6)^2 = 36$$

 $x^2 = 36 - (y-6)^2$

When
$$x = 2\sqrt{5}$$
, $(2\sqrt{5})^2 + (y-6)^2 = 36$

Then y = 2 or 10 (reject)

Method 1 Volume of inert gas needed

$$= \pi \int_{2}^{12} 36 - (y - 6)^{2} dy$$
$$= \pi \left[36y - \frac{(y - 6)^{3}}{3} \right]_{2}^{12}$$
$$= \frac{800}{3} \pi \text{ cm}^{3}$$

Method 2
Total volume of sphere $\left| \frac{4}{3} \pi (6)^3 \right| = 288\pi$

Volume of the sphere that is not filled by inert gas

$$= \pi \int_0^2 36 - (y - 6)^2 dy$$
$$= \pi \left[36y - \frac{(y - 6)^3}{3} \right]_0^2$$
$$= \frac{64}{3} \pi$$

Volume of inert gas in the light bulb

$$= 288\pi - \frac{64}{3}\pi = \frac{800}{3}\pi \text{ cm}^3$$
$$x = \pm\sqrt{36 - (y - 6)^2}$$

(ii)
$$x = \pm \sqrt{36 - (y - 6)^2}$$

Commented [OMFJ5]: formula for sphere not given, unlikely

Commented [TKL6R5]: Can provide as alternative

$$= \int_{2}^{12} 2\pi \left(\sqrt{36 - (y - 6)^{2}} \right) \sqrt{1 + \left(\frac{-2(y - 6)}{2\sqrt{36 - (y - 6)^{2}}} \right)^{2}} dy$$

$$= 376.991118$$

(iii) Since 1 unit = 100 m, 1 unit² = 10000 m².
Region
$$R = (11e - 4e^2)(10^4) = 3448.757 \text{ m}^2$$

Number of light bulbs the art student would acquire
$$= \frac{3448.757}{0.5} = 6897.514 \approx 6898$$

The irregular shape of region R would result the light bulbs lighting up overlapping zones.