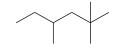
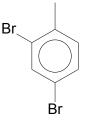
1 Introduction to Organic Chemistry Tutorial

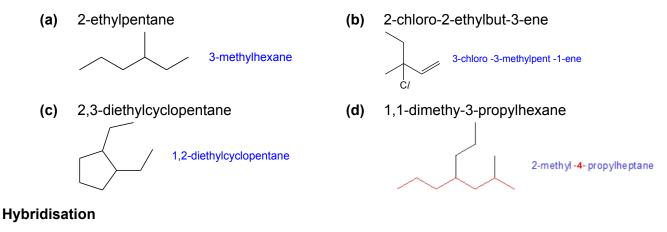

Structure and naming

- **1** Give the IUPAC name for each compound.
 - (a) CH₃CH(CH₃)CH₂CH(OH)CH₃ 4-methylpentan-2-ol


(c)
$$Cl \rightarrow CH_3$$

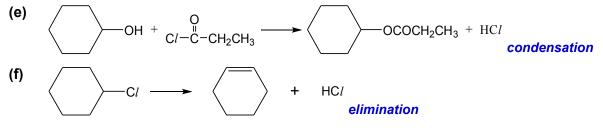
1-chloro-4-methylcyclohexane

- 2 Draw the skeletal formula of each compound.
 - (a) 2,2,4-trimethylhexane


- (b) CH₂=CHCH=CHBr 1-bromobuta-1,3-diene
- (d) CH₃CH(CO₂H)CH₂CH₃ 2-methylbutanoic acid
- (b) 2,4-dibromomethylbenzene

(c) 1-ethyl-3,3-dimethylcyclopentane

3 For each part, the name given is **incorrect**. Draw the skeletal formula for each and give its correct IUPAC name.


- 4 State the type of hybridisation of **each carbon** in each species.
 - (a) CH_3^{-} sp³ (b) CH_3CH_2OH both sp³ (c) CH_3CHO sp³ and sp²
 - (d) $CH_{3^+} sp^2$ (e)

C₁ to C₄ and C₇: sp²; C₅, C₆ and C₈: sp³

reduction

Type of reaction

- 5 Classify each reaction as *addition*, *elimination*, *condensation*, *oxidation*, *reduction* or *substitution*.
 - (a) $CH_3CH_3 + Br_2 \longrightarrow CH_2BrCH_3 + HBr$ substitution
 - (b) $CH_2 = CHCH_3 + Br_2 \longrightarrow BrCH_2CH_2BrCH_3$ addition
 - (c) $CH_3CH_2CH_2OH + 2[O] \longrightarrow CH_3CH_2CO_2H + H_2O$ oxidation
 - (d) $CH_3CO_2H + 2[H] \longrightarrow CH_3CHO + H_2O$

6 [N08/I/19]

The bond lengths in buta-1,3-diene differ from those which might be expected. The carboncarbon bond length in ethane is 0.154nm and in ethene is 0.134nm. The central single bond in buta-1,3-diene (C2-C3), however, is shorter than the single bond in ethane: it is 0.147nm.

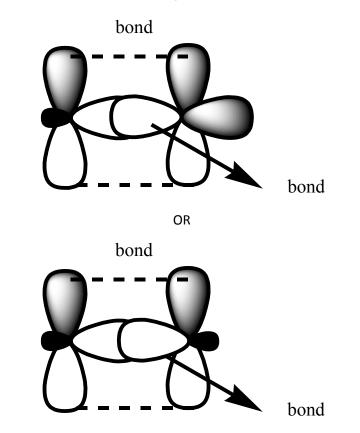
1
CH₂ $\overset{2}{=}$ CH $\overset{3}{=}$ CH $\overset{4}{=}$ CH₂ $\overset{4}{=}$ C

0.134nm 0.147nm 0.134nm

What helps to explain this C2-C3 bond length?

A It is a sp²-sp² overlap.

- **B** It is a sp²-sp³ overlap.
- **C** The electrons in the filled p orbitals on C2 and C3 repel each other.
- **D** The sp³-sp³ bonding is pulled shorter by a p-p (π bond) overlap.


In ethane, the carbons car sp³ hybridised, hence the single bond in ethane is formed from the overlap of sp³ hybrid orbitals; while in buta-1,3-diene, the carbons are sp² hybridised, hence the C2 – C3 bond is formed from the overlap of sp² hybrid orbitals. Since sp² hybrid orbitals have higher s character, they are smaller and have greater degree of orbital overlap leading to a shorter bond length.

- 7 Methanal has the molecular formula of HCHO and contains an unsaturated carbon. The C=O functional group of methanal can be described as being joined by a σ -bond and a π -bond.
 - (a) Identify the type of hybridisation of C in methanal.

sp₂

(c) Hence, use a labelled diagram to show the orbitals that form the C=O bond in methanal.

 σ -bond is formed by the head-on overlap of sp² hybridised orbitals of the C and the p orbital of O, or the of sp² hybridised orbitals of the C and and O atoms π -bond is formed by the sideways overlap of two p orbitals C and O atoms Remind students : π -bond formation occurs only after a σ -bond is formed.

Balancing equation for organic redox reaction

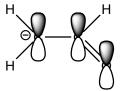
- **8** Balance each equation with either [O] or [H]. Add H₂O whenever necessary.
 - (a) $CH_3CH_2OH \longrightarrow CH_3CHO$ $CH_3CH_2OH + [O] \longrightarrow CH_3CHO + H_2O$
 - (b) $CH_3CH_2CONH_2 \longrightarrow CH_3CH_2CH_2NH_2$ $CH_3CH_2CONH_2 + 4[H] \longrightarrow CH_3CH_2CH_2NH_2 + H_2O$
 - (c) $CH_3CH=CHCH_3 \longrightarrow 2CH_3CO_2H$ $CH_3CH=CHCH_3 + 4[O] \longrightarrow 2CH_3CO_2H$

(d) $CH_3CO_2CH_3 \longrightarrow CH_3CH_2OH + CH_3OH$

$CH_3CO_2CH_3 + 4[H] \longrightarrow CH_3CH_2OH + CH_3OH$

Drawing Resonance Structures

9 [N22/P2/5d(i) and (ii)]


The enolate ion can be represented by two different structures, W and V, as shown in the figure below. The arrow \leftrightarrow indicates that the actual structure of the enolate ion is somewhere between these two structures, with the negative charge delocalised over both the oxyen and carbon atoms.

\

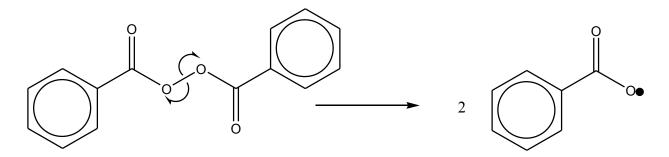
(a) Sugges how the delocalisation of electrons occur in an enolate ion.

The p orbitals of the 2 C and O atoms are aligned and sideway overlap with one another in a continous overlap.

(b) Deduce the number of delocalised electrons in an enolate ion.

4 electrons.

Electron flow in Reaction Mechanism


10 [N22/P3/3e]

Benzoyl peroxide, $(C_{6}H_{5}CO)_{2}O_{2}$, can be used to treat some skin conditions. It can be prepared by treating benzoyl chloride with barium peroxide.

 $2C_6H_5COCl + BaO_2 \rightarrow (C_6H_5CO)_2O_2 + BaCl_2$

The O–O bond in peroxide is weak and undergoes homolytic fission.

Use curly arrow notation to show the equation for the homolytic fission of (C₆H₅CO)₂O₂

