
Edgefield Secondary School Sec 4NA Science Physics 2022 EOY Exam Solutions

MCQ [20 marks]

В	1	2	3	4	5	6	7	8	9	10
Answer	В	D	D	D	С	D	С	А	С	А
Question	11	12	13	14	15	16	17	18	19	20
Answer	В	С	В	В	В	В	С	В	А	А

SECTION A [14 marks]

Solutions	Marks	Remark s
Resultant force = 10 N Direction = to the right		
Water resistance, water drag, water friction (or drag fore or resistive force)	1	
As the forward thrust/force is equal to the water resistance, net force on swimmer is 0 N, So he will swim at constant speed	1	
M = (1.5 x 40) + (3 x 10) = 90 Ncm	1	
$ \begin{array}{rcl} Ma &=& Mc \\ 90 &=& W \times 30 \\ W &=& 3.0 N \end{array} $	1	
Arrow drawn vertically down from CG at 50 cm mark The line of action of weight passes through the pivot, no perpendicular distance, no moment by the weight.	1	
Q: Constant speed (zero acceleration) R: decreasing deceleration	1	Do not accept zero a for Q
Distance = $\frac{1}{2}(17.5 + 5)5 = 56.25$ = 56.3 m or 56 m	1	
With the skis, the area in contact with the snow is bigger. Since $P = F/A$, since $F =$ weight is constant, the pressure decreases, so wont sink into the snow.	1	
	Resultant force = 10 N Direction = to the rightWater resistance, water drag, water friction (or drag fore or resistive force)As the forward thrust/force is equal to the water resistance, net force on swimmer is 0 N, So he will swim at constant speedM = $(1.5 \times 40) + (3 \times 10) = 90$ NcmMa = Mc 90 = W x 30 W = 3.0 NArrow drawn vertically down from CG at 50 cm mark The line of action of weight passes through the pivot, no perpendicular distance, no moment by the weight.Q: Constant speed (zero acceleration) R: decreasing decelerationDistance = ½(17.5 + 5)5 = 56.25 = 56.3 m or 56 mWith the skis, the area in contact with the snow is bigger. Since P = F/A, since F = weight is constant, the	Resultant force = 10 N Direction = to the right1Water resistance, water drag, water friction (or drag fore or resistive force)1As the forward thrust/force is equal to the water resistance, net force on swimmer is 0 N,

SECTION B [16 marks]

gravitational potential energy	1	
$GPE = mgh = 40 \times 10 \times 15 = 600 \text{ J}$	2	
P = E/t = 600/60 = 10 W	2	
Power from main = 100/70 x 10 = 14.28 = 14.3 W or 14 W	1	
E = Pt = 0.0143 x 12 = 0.1714 kWh	1	
Cost = 0.1714 x 0.28 = \$0.048 (4.9 cents)	1	
 (i) Microwaves (ii) Gamma rays, x-ray or ultraviolet rays 	1	
$V = f\lambda$ 3.0 x 10 ⁸ = 1800 x 10 ⁶ x λ λ = 0.1667	1	
= 0.167 m or 0.17 m	1	
(i) 20 Hz to 20kHz	1	
(ii) (i) (2) B has lower amplitude than A	1	Do not accept B is softer
Electromagnetic waves are transverse wave while sound is longitudinal. OR Electromagnetic waves can travel through vacuum while sound cannot pass through vacuum.	1	as stated in question
	$= 14.3 \text{ W or } 14 \text{ W}$ $E = Pt = 0.0143 \text{ x } 12 = 0.1714 \text{ kWh}$ $Cost = 0.1714 \text{ x } 0.28 = \$0.048 (4.9 \text{ cents})$ (i) Microwaves (ii) Gamma rays, x-ray or ultraviolet rays $V = f\lambda$ $3.0 \text{ x } 10^{6} = 1800 \text{ x } 10^{6} \text{ x } \lambda$ $\lambda = 0.1667$ $= 0.167 \text{ m or } 0.17 \text{ m}$ (i) 20 Hz to 20kHz (ii) (1) (ii) (1) (ii) (2) Hz to 20kHz (iii) (2) B has lower amplitude than A Electromagnetic waves are transverse wave while sound is longitudinal.	P = E/t = 600/60 = 10 W 2 Power from main = 100/70 x 10 = 14.28 = 14.3 W or 14 W 1 E = Pt = 0.0143 x 12 = 0.1714 kWh 1 Cost = 0.1714 x 0.28 = \$0.048 (4.9 cents) 1 (i) Microwaves (ii) 1 (iii) Gamma rays, x-ray or ultraviolet rays 1 V = fλ 1 1 3.0 x 10 ⁶ = 1800 x 10 ⁶ x λ $\lambda = 0.1667$ = 0.167 m or 0.17 m 1 (i) 20 Hz to 20kHz 1 (ii) (1) 1 (iii) (1) 1 (iii) (1) 1 (iii) (1) 1 Electromagnetic waves are transverse wave while sound is longitudinal. 1

7a	V _{R2} = 12 V	1	
b	$R_2 = V/I = 12/0.8 = 15 \Omega$	1	
С	$P_{R2} = IV = 12 \times 0.8 = 9.6 W$	2	
d	$I_{R2} = 2.4 - 0.8 = 1.6 A$	1	
	$R_1 = V/I = 12/1.6 = 7.5 \Omega$	1	
е	When R3 is connected parallel to R1, the total effective	1	
	resistance of the circuit decreases. Hence the main current A1 reading will increase.	1	