
 

 

 
 

Content 

• Newton’s Law of motion 

• Linear momentum and its conservation 

Learning Outcomes 

Candidates should be able to: 

(a) State each of Newton’s laws of motion 

(b) Show an understanding that mass is the property of a body which resists change in motion (inertia) 

(c) Describe and use the concept of weight as the effect of a gravitational field on a mass 

(d) Define and use linear momentum as the product of mass and velocity 

(e) Define and use impulse as the product of force and time of impact 

(f) Relate resultant force to the rate of change of momentum 

(g) Recall and solve problems using the relationship F = ma, appreciating that resultant force and acceleration are always 

in the same direction 

(h) State the principle of conservation of momentum 

(i) Apply the principle of conservation of momentum to solve simple problems including inelastic and (perfectly) elastic 

interactions between two bodies in one dimension (knowledge of the concept of coefficient of restitution is not required) 

(j) Show an understanding that, for a (perfectly) elastic collision between two bodies, the relative speed of approach is 

equal to the relative speed of separation 

(k) Show an understanding that, whilst the momentum of a closed system is always conserved in interactions between 

bodies, some change in kinetic energy usually takes place. 

 

In dynamics, we study the forces that act on a body 

to cause motion. The vector sum of these forces 

gives a resultant force that causes the body to 

accelerate. This resultant force causes change in 

motion.  

 

Dynamics explain the reasons behind kinematics 

where we describe how a body moves under 

constant acceleration.  

In the 17th century, Sir Isaac Newton formulated his 3 laws of motion. The process required Newton to deploy the concept of an “external agent” 
that can transport action at a distance, provide instantaneous motion and not be subject to resistive forces. Newton’s personal reading habits at 
that time resulted in him imagining these “external agents” as angels. He gradually trimmed their wings and transformed this new agent into a 
purely objective “force”. Today, Newtonian mechanics is useful for many engineering efforts in our everyday scale, like how an artillery shell travels 
in air, and it describes many phenomena observed. Occasionally, we can take time off to marvel at the inspiration behind “force” – that the wings 
of angels are ever beating invisibly and constantly providing instant messaging between objects - so that forces may exist in our modern world. 

The Tesla Model 3 did very well in crash-testing because its engineers 
understood Dynamics very well in ensuring the safety of the passengers. 



 

 

 

What the 3rd law refers to as “a body” can 

also refer to a collection of bodies. We 

can regard these bodies as “a system”.  

 

 

 

Example 1 

 

 

Newton’s 1st Law gives rise to the idea 

inertia: that a body is reluctant to change 

its “status quo” of motion.  

 

True or False: the weight of the ball and the normal contact force on ball 

by table are Newton’s 3rd law pair of action-reaction forces. 

 

Fgrav on ball 
 

Fgrav on Earth 
 

Non table 
 

Non ball 
 

Solution 

 

False. The weight of the ball is the gravitational force 

that the Earth acts on the ball. By Newton’s 3rd Law, 

the reaction force should be the gravitational force 

that the ball acts on the Earth. 

 

For the normal contact force on the ball, the Newton’s 

3rd Law pair of action-reaction is the normal contact 

force on table by the ball. 

 

Newton’s Third Law of Motion states that  

 

when body A exerts a force on body B, 

 

body B exerts on body A a force 

of the same type,  

 

equal in magnitude and 

opposite in direction.  

 

system 

direction of 
acceleration 

Fwall on feet 

Ffeet on wall 

Fwall on feet 

upthrust 

weight 

Free Body Diagram of a swimmer in 
pure horizontal motion. The net force 

on swimmer is provided by the force of 
the wall on the feet. Newton’s 3rd Law 
applies at the wall: the same type of force 
(contact force) acts different bodies (the 
swimmer and the wall) with equal 
magnitude and opposite directions. 

Newton’s First Law of Motion states that  

 

an object stays at rest or continues to move  

at constant velocity 

 

unless a resultant force acts on it. 

 

 

 

The mass of a body is  

 

the property of a body which 

resists change in motion. 

 

 



 

 

The weight of a body at a point (location) in space is 

given by W = mg, where m is the mass of the body and 

g is the gravitational field strength at that point in space.  

 

The mass of a body remains constant anywhere in the 

universe while the weight changes with gravitational field 

strength that the body is situated in. 

 

Example 2 

A fly hovers stationary in front of an open-top rail cart that is at rest. The cart starts to move forward. 

Explain why the fly will hit the cart. 

 

 

 

 

  

 

 

p  :   linear momentum (kg m s-1) or (N s).) 

m :  mass (kg) 

v  :  velocity  (m s-1) 

 

Linear momentum is a vector quantity and it takes the same direction as the velocity of the body. 

 

It takes work done to accelerate a body so that it gains momentum. Conversely, the more momentum 

a body has, the “harder” it is to reduce the momentum to zero to stop it (see Newton’s 2nd Law). 

 

 

Solution 

Fly is stationary so is in translational equilibrium with no resultant 

force. By Newton’s 1st Law, it continues to be at rest. 

 

Cart moves from rest so there is change in velocity hence 

acceleration. Frictional force by track acts on the wheels and cart 

accelerates towards the fly. 

The weight of a body is  

 

the force acting on the body  

due to a gravitational field 

 

 

The linear momentum of a body is  

 

the product of its mass and its velocity. 

 

 

 

 

 

p = mv 



 

 

The formal definition of Newton’s 2nd 

Law reads mathematically as 

net

d

d

p
F k

t
=   

with k denoting the proportionality 

constant.  

Considering SI units and regarding 1 

N as the force which results in an 

acceleration of 1 m s-2 when it is 

applied to a mass of 1 kg: 

( )net

d
1

d

p
F

t
=  

If the mass is constant, then by  

product rule 

                   

( )net

d d

d d

d d

d d

p
F mv

t t

v m
m v

t t

ma

= =

= +

=

: 

it reduces to a more familiar form. 

 

Example 3 

A cricket player catches a fast moving ball with his bare hands. Explain why it is preferable that his 

palms draw back while catching the ball. 

 

 

Note: (i) netF  on ball is in a negative direction i.e. opposing the initial velocity of the ball – in order to 

slow the ball down. (ii) the body that is having the change in momentum is the body that is 

experiencing a net force exerted (in this case, the ball). Therefore, it is very common for explanations 

to demand the action-reaction pair of the force instead (in this case, the hand). Consequently, many 

explanation-type questions involve both N2L and N3L in a similar fashion. 

  

Solution 

To catch a ball is to reduce the momentum from just before touching the 

hands, to zero. 

 

 

[N2L] For this same change in ball’s momentum , the 

time interval when the force is applied by hand on ball to slow it down 

is lengthened. 

 

[force, magnitude] By Newton’s 2nd Law, the average force on ball by 

hand is reduced. 

 

[N3L] By Newton’s 3rd Law, the average force on hand by ball is reduced. 

so hand experiences less pain when catching the ball. 

 

Newton’s Second Law of Motion states that the 

rate of change of momentum of a body is  

 

[magnitude]  directly proportional to the  

    resultant force acting on it and  

 

[direction]   takes place in the direction of the   

                          resultant force. 

 

 

Resultant force is related to  

 

the rate of change of momentum. 

 

net

d

d

p
F

t
=  

 

0 



 

 

Example 4 

 
Solution 

Take direction towards “you” as positive: 
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By Newton’s 3rd Law, there is a contact force on hand by ball that is equal in magnitude and opposite 

in direction. Therefore same magnitudes of force: 19 N by non-bouncy ball and 38 N by bouncy ball. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Steps to solve dynamics problems: 
 

1. Sketch a labelled force diagram. Identify and label all the forces acting on body (and that body 

only). 

2. Determine the net force acting on the body, which will have same direction as acceleration. 

3.  Equate contributing netF F ma= = . This mass is the mass of the body considered. 

In a game of dodge ball, a bouncy ball and a non-bouncy ball both of 

mass 0.095 kg are thrown directly towards you at the same speed of 

20 m s-1. After impact, the bouncy ball rebounds off in the opposite 

direction with the same speed and the non-bouncy ball comes to a 

stop. They both come into contact with your arm for 0.10 s.  

 

Calculate the magnitudes of the forces acting on you by each ball. 

 

+ve 



 

 

Example 5 

A 1000 kg block hangs on a rope. Find the tension in the rope if 

(a) the block is stationary; 

(b) the block is moving upward at a constant speed of 5.0 m s-1; 

(c) the block is accelerating upward at 5.0 m s-2. 

 

 

 

Example 6 

Two identical, light, extensible strings suspend a mass from a ceiling as shown. A person suddenly 

pulls down on the bottom string. Explain which string is likely to break first. 

 

 
=

 
=

 
bottom top

bottom top bottom top

 if  then 
if  then    if  then 

both strings equally 
bottom string likely break first top string likely break first

likely to break
    

a g, T
a g, T a g, T T

T
T

 

  

weight, W 

tension, T 

(a) a = 0 

tension, T 

weight, W 

(b) constant speed so a = 0 

weight, W 

tension, T 

(c) a = 5.0 m s
-2

 

Solution: take upwards as positive 

a 

    
  

Solution 

no tension in bottom string initially. 

mass suspended so no resultant force 

in any direction because of 

equilibrium.  

Consider vertical forces:  

 

Take downwards positive.  

On tug, string extends so mass 

accelerates down 

 

top string 

bottom string 

mass 

ceiling 

T
top

 

W 
  

initial: 

T
top

 

W 
  T

bottom
 

  

sudden tug: 

Possible outcomes: 



 

 

Example 7 

A light, inextensible string connects a 4.0 kg mass and a 6.0 kg mass over a smooth, fixed pulley. 

Find the (i) tension in the string and (ii) the magnitude of accelerations acting on both masses. 

 

 
 

 

Note: magnitude of a is the same for both masses as string cannot be stretched and remains taut. 

 

Example 8 

 

Note: (i) The action-reaction pairs on X by Y on Y by X and F F  are (both) normal contact forces, between 

the vertical surfaces. (ii) Even though normal contact forces by floor and weight are not involved in 

the calculations, you need to draw and label these forces if asked to draw labelled force diagrams.  

 

  

Solution 

tension is same throughout string 

 

  

 

Solving (1) and (2) 

a = 1.96 m s-2 

T = 47.1 N 

m4g 

  

4.0 kg 

6.0 kg 

T 
  

m6g 

  

T 
  

a 

  
a 

  

A constant force P is applied to block X which is adjacent to block Y. 

The blocks are of masses m and 3m respectively and sit on a smooth 

horizontal surface. Determine the force exerted by X on Y. 

 X 
m 

Y 
3m 

P 

P 

a 

4m 
Fon Y by 

X 

a 

3m 

Option 1: Consider only 

 forces on X: 

 

 

 

 

 

  

 

P 

a 

m 

Fon X by Y 

Option 2: Consider only  

forces on Y: 

 

 

 

 

 

  

 

 

 

Solution 

Consider X and Y  

as 1 system:  

 

 

 

 

  

Newton’s 3rd Law 

action-reaction pair 



 

 

Example 9 

3 blocks are connected by light, inextensible strings on a horizontal smooth surface. A force of T1 = 

60 N acts to the right on m1. If m1 = 30 kg, m2 = 20 kg and m3 = 10 kg, find the tensions T2 and T3. 

 

 
Note: An alternative intermediate step can be to regard m2 and m1 as 1 system but the mathematics 

will be slightly more complicated because T3 will act left while T1 acts right. Through practice, we can 

learn to decide which combinations of masses to consider as a system to do less math. 

  

Example 10 

A car of mass 800 kg is moving up a hill inclined at 30o to the horizontal. The total resistive force FR 

on the car is 1000 N. Calculate the driving force FD when the car is 

(a) accelerating up the incline at 2.0 m s-2. 

(b) moving with a steady velocity of 15 m s-1 up the incline. 

Solution 

( )

( ) ( ) ( )
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 sin

800 2 1000

N

800 9 81 sin30

6520

 sin

 sin

1000 800 9 81

 

s

a    

in30

 

49

  

 N

b     

2

 

0

 0

maF

F mg ma

F mg

.

g

F

F

.

m

g

a

m

ma

F

F

F

F mF

 

  

Note: if asked to draw a labelled force diagram, you are expected to show N (perpendicular to the 

incline) and W = mg (vertically down).  

 

m3 
10 kg T1 = 60 N 

60 N 
a 

60 kg 

T3 

a 

10 kg 

Consider only m3: 

 

 

 

 

 

 

 

Consider m3 and m2 as a system: 

 

 

 

 

 

 

 

 

Solution 

Consider all masses  

as 1 system:  

 

 

 

 

 

m2 
20 kg 

m1 
30 kg 

T2  T3  

T2 

a 

30 kg 

30 

N 

W = mg 

FD 

FR 

a 

Free body diagram: 

mg sin θ 

FD 

FR 

a Consider motion  
along slope:  



 

 

Example 11 

Two blocks m1 and m2 both of mass 5.0 kg are connected by a light inextensible string passing over 

a smooth pulley as shown below. The contact surfaces are smooth. Find the tension in the string. 

 

Solution 

( )

( ) ( )

( ) ( )

=

=

=

 − =

=

net 1

1

net 2

2 2

 

   1

 

sin30    2

Solve 1  and 2 :

12 3 N

m a

T m a ___

m a

_

F

F

m g T m a __

T .

  

 

 

 

 

 

We do not measure our weight (gravitational force on us by the Earth) directly. A weighing 

scale measures the normal contact force exerted on us when we are on it. When we are 

stationary, the normal contact force on us is constant, at the same magnitude as our weight. 

 

We feel “compressed” when lifts start to move up, or “a sense of dropping” 

when lifts start to move down. This funny sensation occurs when the lift 

accelerates, resulting in a change in the magnitude of normal contact force 

that the floor exerts on us. In other words, we are used to feeling N, the 

normal contact force that a floor exerts on us, as the sensation of ‘weight’. 

 

If a lift has its cables cut and all brakes missing, the lift falls freely at 

acceleration of g = 9.81 m s-2. A person in the lift will feel the sensation of 

‘weightlessness’. This does not mean that the person has no weight.  

 

‘Weightlessness’ refers to the state where a body experiences no 

contact force(s). In this case, the lift floor exerts zero contact force on the 

person, as both lift and person fall at the same rate.  

 

If that person in the falling lift is originally standing on a weighing scale, the 

reading on the scale will read zero – recall that weighing scales do not 

measure our true weight. They measure the normal contact forces 

between our bodies and the weighing scale.  

 

True weight does not change as long as the gravitational field is constant 

and uniform. Apparent weight is given by the reading on a weighing scale, 

and changes with the normal contact force between our bodies and the 

weighing scale.  

30 

N 

W = mg 

m
1
 

m
2
 

m
1
 T 

a 

m
2
 

T 

a 

W  

N  

W  

N  

a  

W  

N  
a  

W  

N → 0  
a → g 

m2g sin30° 

T  

mass 2: 
a 

mass 1: 



 

 

Examples of “weightlessness” 

 -  only true weight acts on person  

 so person accelerates at g:  

 

• A free-falling parachutist before parachute 

is deployed (ignoring air resistance) 

• A free-falling bungee jumper before the 

cord experiences tension (ignoring air 

resistance) 

• An astronaut inside the International 

Space Station (both astronaut and space 

station falls towards centre of Earth at the 

same rate) 

 

> A scuba diver floating underwater does 

 not feel weightless: diver can feel 

 upthrust of water. 

 

> A parachutist descending with deployed

 parachute does not feel weightless: the 

 harness of the parachute is pulling 

 (exerting a force upwards) on the person. 

 

 

 

In practice near Earth’s surface, states of ‘weightlessness’ 

cannot last long due to air resistance. Falling objects tend 

to reach a terminal velocity. 

 

  
 

See H202 Kinematics for more treatment of motion of falling objects. 

  

How is terminal velocity achieved? 

 

[initial conditions] object starts with zero speed so it 

experiences acceleration of g 

 

[recall, forces] As object accelerates, relative speed 

between object and air increases so magnitude of air 

resistance increases 

 

[force, magnitude] resultant force is vector sum of 

downwards weight and upwards air resistance which 

reduces to zero when air resistance is equal to weight  

 

no net force, no acceleration so object reaches constant 

velocity. 

Zero G flights simulate weightlessness not by “removing” gravity, but 

by allowing both the aircraft and its passengers to free fall at the same 

rate. Therefore, the “zero gravity experience” can only last a short while. 

Air resistance allow rain drops to reach terminal velocity. 
Otherwise, they can reach from 40% to nearly the speed of 
sound dropping to Earth, the latter of which can fracture skulls. 



 

 

Example 12 

A man of mass m stands on a platform scale in a lift. 

(a) Draw a free-body diagram to show the forces acting on the man. 

 

 

 

 

 

 

 

 

(b)  Determine the reading on the scale when the: 

 (i) lift is stationary 

 (ii) lift is going down to a lower level:     

  1.  accelerating at 0.5 m s-2 

  2.  moving at constant speed v 

  3.  decelerating at 0.5 m s-2 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

  

 

 

Normal contact force, N  
(by scale on man), N 

Weight, W 

 

Lift is stationary 

(i)       N – W = 0  

            N = W 

 

 

 

 

Lift is accelerating downwards 

(ii) 1.   N – W = m(-0.5)  

            N = W – 0.5m 

 

  

 

 

Lift is moving at constant speed 

(ii) 2.   N – W = 0 

                 N = W        

 

 

 

 

Lift is moving downwards 

and decelerating 

 

       (ii) 3.  N – W = 0.5m 

             N = W + 0.5m 

 

 

 

        

 

N 

W 

-0.5 m s-2 

 

N 

W 

+0.5 m s-2 

 

N 

W 

a = 0 

N 

W 

a = 0 

 

Lift is free-falling 

(iii)     N – W = ma  

    free-falling so acceleration is -g, 

    N – W = m(-g) 

  N – mg = -mg 

           N = 0  (“weightlessness”) 

 

Lift is accelerating upwards 

(iv) 1.   N – W = 0.5m  

             N = W + 0.5m 

 

  

 

 

Lift is moving at constant speed 

(iv) 2.   N – W = 0 

                 N = W        

 

 

 

 

Lift is moving upwards 

and decelerating 

 

       (iv) 3.  N – W = m(-0.5) 

             N = W – 0.5m 

 

 

 

        

 

N 

W 

a = 0 

 (iii)  lift is faulty and free-falling 

 (iv) lift is going up to a higher level:     

 1.  accelerating at 0.5 m s-2 

 2.  moving at constant speed v 

 3.  decelerating at 0.5 m s-2 

N 

W 

+0.5 m s-2 

 

N 

W 

-0.5 m s-2 

 

W 

-g 

Taking upwards as positive: 
Fnet = ma 
 

Taking upwards as positive: 
Fnet = ma 



 

 

 
Certain real life situations involve a “flowing mass”. Typical scenarios include a stream of water, a 

column of moving air, a jet of combusted gases or a continuous flow of powder or sand. In such 

cases, it useful to consider the change in momentum of a small mass in 1 second.  

 

Example 13 

A conveyor belt system transfers luggage at an airport. At a particular section, a horizontal belt 

moves at a constant speed of 1.5 m s-1. The rate at which luggage is placed vertically on to the belt 

is 20 kg s-1. Find the magnitude of average driving force F generated by the horizontal belt. 

 

Solution 

( ) ( )20 1.5 0

1

30 N

final initial
net

p p
F

t

−
=



−
=

=

  

 

Note: we can interpret this answer as the average force needed to accelerate the luggage from an 

initial horizontal speed of zero to that of the constant speed of 1.5 m s-1. 

 

Example 14 

Water leaves a hose of diameter d = 0.050 m at a speed v = 0.40 m s-1. The water hits a wall 

perpendicularly without rebound. The density of water is  = 1000 kg m-3.  Calculate the force exerted 

on the wall by the water.  

 

                                                                                  In 1 s:  

 

 

 

 

 

Solution 

In 1 s, a cylindrical-shaped mass of water (with diameter 0.050 m and length 0.40 m) hits the wall.  

Final horizontal momentum pfinal = 0 since the water flows downwards without rebound.   

 

( )

( ) ( ) ( )
2

-1

-1

2

on water

0.050
0.40 0.40 0.314 kg m s

2 2

0 0.314
0. 1

volume

1000

3 4 kg m s
1

initial

final initial

p mv

d
L

p
F

t

v

p

v

  

= =

   
=

 
= = 

 
 

−

  
   

−
= = = −



 

 

By Newton’s 3rd Law, magnitude of force on water by wall is the same as magnitude of force on wall 

by water. So average force on wall is 0.314 N in the direction of the velocity of water.  

 

 

  

v = 1.5 m s-1 
20 kg s-1 

 

d = 0.50 m 

v = 0.40 m s-1 

d = 0.50 m 

L= 0.40 m 



 

 

Related Examples 

A helicopter generates lift by pushing a column 

of air downwards via its rotors. 

 

 

 

 

 

 

 

 

 

 

By Newton’s 2nd Law, average force on air 

final initial
net

p p
F

t

−
=


 

 

By Newton’s 3rd Law, average lift on helicopter 

has same magnitude as force on air. 

 

A rocket burns fuel and emits gases to produce 

thrust. As fuel is burnt, the mass (and weight) of 

the rock also decreases  

 

 

 

 

p :  impulse (N s) or (kg m s-1) 

Fnet :  net force (N) 

t :  time of impact (s) 

 
We can think of impulse as the area under a (net) force-time graph which gives the change in 

momentum p in this time interval. It is useful for working with force(s) that vary with time. 

 

From Newton’s 2nd Law, 

( )

net

net

netHence             for constant or average 

d

d

 d p

p F t F

p
F

t

F t =

=



 = 

  

 

This should look familiar to you because we have worked with a force which varies across 

displacement (rather than time) in H205 Work Energy Power. Here are the parallels: 

 

  

vair = 0 

v 

Wheli  

lift 

vgas = 0 

W  

thrust 

vexhaust  

Impulse is defined as 

 

the product of force and time duration of impact. 

netp F t =   



 

 

Work-Energy Theorem Impulse-Momentum Theorem 

Area under force-displacement graph gives 

work done by force (process w/ energy transfer). 

Area under force-time graph gives  

impulse which is change in momentum. 

  
  

Example 15 

A shotput athlete draws her hand back before pushing the shot forward. By considering impulse, 

explain how this increases the launch velocity of the shot. 

 

Solution 

netp F t =   

Increases time over which force is applied, 

so increases the change in momentum of shot. 

For a shot of constant mass,  

momentum is directly proportional to velocity 

so the launch velocity is increased.   

 

 

 

 

 

Example 16 

A varying force F is applied to a mass of 10 kg. The mass gains 40 kg m s-1 of momentum. Find x. 

 

Solution 

area under force-time graph gives impulse 

( ) ( ) ( ) ( ) ( ) ( )
1 1

1 4 1 1 40
2 2

10 N

x x x

x

+ − + =

=

 

 

 

 

 

 

 

 

s 

  
work done E 

 

s 

 

s  

s 

t 

  
impulse p 

 

s 

 

s  

F / N 

t / s 

x  

1  4  0  5  



 

 

 

By Newton’s 2nd Law of motion, when there is no net force acting on an isolated system (comprising 

more than one body), the system must experience no change of linear momentum.  

 

This is consistent with Newton’s 1st Law, as the system remains at rest or remains at constant velocity 

when no net external force acts on the system. 

 

The above idea leads to the 

Principle of Conservation of Linear 

Momentum. For a system of 2 

masses in which they collide 

head-on: 

 1 1 2 2 1 1 2 2u m u m v vm m+ = +  

 

 
 
 
 
 
 

 
Using Newton’s Laws on head-on collision between 2 masses 

 
 

Take rightwards as positive, and t as the small-time interval during which on 2 by 1 on 1 by 2 & F F  act, 

 

on 2 by 1 on 1 by 2

2 1
2 1

f

 

rom Newton's 3rd Law:       

from Newton's 2nd Law:                

                

 

 

      

 

      

 

       

                                                  

p p

F F

p p
t t

 
= −   =


−
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
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1 1 2 2 1 1 2 2

 

 

              

                                                                                                             

p p p

u m u m

p

m v m v

− −

+ =

= −
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Hence, total linear momentum of both masses before and after collision remains constant. 

 
Note:  

1. Although the total momentum of the system (consisting of bodies 1 and 2) remains 

unchanged, the momenta of body 1 and body 2 individually has changed due to the net force 

that they exert on one another during the collision. 

2. Head-on means that the velocities of the centres-of-mass of the bodies are all along 1 line of 

action (mathematically we say that the velocities are collinear) 
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F
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F
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both masses momentarily 
move with same speed 

before collision during collision after collision 

The Principle of Conservation of Linear 

Momentum states that  

 

the total linear momentum of an isolated system  

of interacting bodies  

before and after collision  

remains constant if no net external force  

acts on the system. 

 

m1 m2 

u1 u2 

system 



 

 

 

Example 17 

Two trolleys X and Y of masses 3.0 and 8.0 kg  

respectively collide. The final momentum of  

X is 2.0 N s in a direction opposite from the 

initial. Find the final velocity of Y. 

 

Solution 

By Principle of Conservation of Linear Momentum: 

 

( ) ( ) ( ) ( ) ( ) ( )
−

+ = +

+ − = − +

= +

X X Y Y X X Y Y

Y

1

Y

8

 m s  to the right

3 5 8 2 2

0 13

m u u v m vm

.

m

v

v

 

 
 

While the total linear momentum of an isolated system is always conserved in interactions between 

bodies, some change in kinetic energy usually takes place. In reality, collisions can result in a loss 

of energy through thermal energy, sound, work done through deformation of the bodies or even 

emission of electromagnetic radiation. Based on energy, we categorize: 

 

type elastic collisions inelastic collisions 
perfectly inelastic 

collisions 

definition 

total kinetic energy 

 of system of bodies 

before and after collision 

remains the same 

total kinetic energy of system of bodies 

after collision is less than before 

special 

result 

relative speed of approach = 

relative speed of separation 
- 

masses stick together and 

move off with same 

velocity after collision 

  

 

5.0 m s
-1
 2.0 m s

-1
 

+ve 



 

 

 

 
By Principle of Conservation of Linear Momentum, 

( ) ( ) ( )
1 1 2 2 1 1 2 2

1 1 1 2 2 2     1 

m u m u m v m v

m u v m _v u __

+ = +

− = −
 

 

Elastic collision so total kinetic energy is conserved: 

 
 

“Relative speed of approach = relative speed of separation” is a special result that applies to 2 

masses (can be different mass!) undergoing head-on elastic collision. You can use this result without 

the need to prove (unless otherwise instructed). If ever asked to prove, remember that the 

mathematical move of ( ) ( )2 2a ab b a b=− + −  is used in simplifying the KE-conservation.   

Note:  The relationship is derived base on the given directions. For different scenario, you must 

consider the directions of the moving bodies and adjust the equation accordingly. 
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Not conserving kinetic energy may sound “bad” but they provide very useful experimental data. These “scattering 

experiments” combine information on loss of energy as well as geometries of rebound particles to identify and 

characterize the resulting observations post-collisions. 



 

 

 

Example 18 

Two balls A and B undergo an elastic head-on collision. Find their final velocities. 

 

Solution 

Take right as positive direction, 

by Principle of Conservation of Linear Momentum: 

( ) ( ) ( ) ( ) ( ) ( )

( )

+ = +

+ − = +

=− +

A A B B A B BA

A B

A B

0 2 1 2 0 3 1 5 0 0 3

0 21 0 3  
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  10 2

m m m m
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. .

u u vv

. . . . . v v

. v v ___

 

Method 1 

elastic collision so sum of kinetic energy  

before and after collision is conserved 

( ) ( ) ( ) ( )

( ) ( )
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2 2

A A B B

2 2

A A B B
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2 2

A B

1

A

1
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B

1 1

2 2
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2 2

1 1

2 2

1 1
0 2

2 2

0 15    2a

solve 1  and 2a  simultaneously
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Note: final directions are assumed; a negative velocity calculated simply means to the left since we 

have defined positive as the right. 

  

1.2 m s-1 

A 
 

B 

0.20 kg 

1.5 m s-1 

0.30 kg 

initial: 

vA 

A 
 

B 

0.20 kg 0.30 kg 

final (directions are assumed): 
vB 

Method 2 

elastic collision so  

relative speed of approach  

= relative speed of separation 

  

 



 

 

Example 19 

Two balls of the same mass m undergo an elastic head-on collision.  The first mass has an initial 

speed of u and the second mass is at rest. Find the final velocities of each of the masses in terms of 

u. 

 

Solution 

Take right as positive direction, 

by Principle of Conservation of Linear Momentum: 

( )
1 2

1 2  

0

1

mu mv

u _ _v

mv

v _

+=

+

+

=
 

 

 

elastic collision so 

relative speed of approach  

= relative speed of separation 

( )
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2 1  
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u v v

u v _v __
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Note: for elastic collisions involving equal masses, if the moving mass hits a stationary mass, there 

is complete transfer of momentum: the initially-moving mass stops and the initially-stationary mass 

moves off with the same velocity. Apply this to the steel balls on a Newton’s cradle. 
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final (directions are assumed): 
v2 

 



 

 

Example 20 

Two balls of the same mass m moves towards each other at the same speed u and collides head-

on elastically. Find the final velocities of each of the masses in terms of u. 

 

Solution 

Take right as positive direction, 

by Principle of Conservation of Linear Momentum: 
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elastic collision so 

relative speed of approach = relative speed of separation 
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Note: here masses move off with same speeds but in opposite directions  

Challenge: Show that in general for elastic head-on collisions of same masses, the bodies exchange 

velocities before and after the collision. 
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final (directions are assumed): 

v2 
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Example 21 

A particle of mass m moving with speed u makes a head-on collision with an identical particle which 

is initially at rest. The particles coalesce (stick together) and move off with a common velocity. 

(a) Find the common speed of the particles after the collision. 

(b) Find the ratio of the kinetic energy of the system after the collision to that before. 

(c) Explain what happens to the kinetic energy that is 'lost'. 

 

Solution 

Take right as positive direction, 

(a) by Principle of Conservation of Linear Momentum: 
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(c) kinetic energy of system converted to thermal energy  

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:  

1. For exams, you need to evaluate ratios and fractions into decimal numbers – i.e. you cannot leave 

answers as ½.  

2. For part (c), there is also sound energy – you can whimsically think of collisions in real life as “oh 

got ‘tok’ sound so not elastic already!”. However, for exam purposes please quote thermal energy 

(heat) as it is the main source of energy dissipation. Also, please see structure of answers for such 

energy questions: need to address the conversion from (which type) to (other type). 
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m  m 
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initial: 

 
2m 

final (direction is assumed): 
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A single body can separate into smaller parts, usually through an explosion or a spontaneous 

disintegration (see topic H220 Nuclear Physics). The principle of conservation of momentum allows 

us to work out the directions and the speeds of the constituent pieces.  

 

Example 22 

(a) Find recoil velocity of a rifle of mass 5.0 kg firing a bullet of mass 20 g at a speed of 620 m s-1. 

(b) Explain which between the rifle or the bullet has a higher kinetic energy. 

  

Solution 

Take right as positive direction, 

by Principle of Conservation of Linear Momentum: 
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Mass of rifle is 250 times the mass of the bullet, so the kinetic energy of the exiting bullet is 250 

times that of the recoiling rifle 

 

 

 

 

 

 

 

 

 

 

Note: the alternative form of 
2

K
2

E
p

m
=  is very useful for comparing ratios of momentum, masses and 

will appear quite often in H219, the topic of Quantum Physics. 

 

  

initial: 

final (direction is assumed): 

    



 

 

Since the total linear momentum of an isolated system remains constant before and after a collision, 

we can regard the system as a single body: we represent the system by its centre-of-mass (“COM”) 

having a constant velocity:  

system total systemm vp =   

 
 

We can imagine the COM as a pivot that allows us to balance the two masses on see-saw. It is akin 

to centre-of-gravity, the single point where the weight of a body may be considered to act. We “take 

moments about origin O”: 

 

1 1 2 2 total COM

1 1 2 2
COM

1 2

considering moments about origin:

sum of moments due to each individual mass moment due to centre of mass of system

x m x m x

x m x
x

m

m

m m

+ =

+

+
=

=

 

 

We can then represent the system of 2 bodies via 1 single point: 
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For instance, if the 2 bodies are of the same mass, it should not be a surprise that the COM is in the 

middle of the 2 masses: 
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By Principle of Conservation of Linear Momentum:
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On the other hand, if one of the bodies is more massive, the COM will lie closer to the more-massive 

body. We can look at binary (pair of) stars. A pair of stars exert gravitational force on each other 

which are internal forces – as a system these forces cancel out. It is an isolated system where no 

external forces act. Therefore, despite the rotation, the COM obeys Newton’s 1st Law. 

 

 

distance 

origin 

m m  
COM 

system 
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In reality most planetary orbits are 

elliptical rather than perfectly circular 



 

 

Example 23 

Two particles A and B of the same mass and same speed of 10 cm s-1 move towards each other and 

collide elastically head-on. Describe the changes, if any, to the centre of mass of the two particles 

before and after collision. 

 

Solution: The total linear momentum of the isolated system is zero and there is no net external force 

acting on the system. The principle of conservation of linear momentum applies and by Newton’s 

first law, the centre of mass remains in its state of rest.  

 

 
 

 

 

 

 

 

 

 

 

 

Note: During collision, by Newton’s 3rd Law both particles exert forces on each other and each 

particle experiences a force. But when considering the whole system, these forces are internal forces 

within the system which cancel out. 
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Example 24 

Particles A and B have the same mass. Particle A moves right at a speed of 20 cm s-1 towards a 

stationary B and they collide elastically head-on. Describe the changes, if any, to the centre of mass 

of the 2 particles before and after collision. 

 

Solution:  

By Principle of Conservation  

of Linear Momentum, 
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Note: centre of mass moves at a constant velocity at 10 cm s-1 to the right as there are no external 

forces on the system throughout the entire motion, even though a collision took place. 

       0             20           40          60           80          100         120         140 

distance / cm 
origin 

 

system 

2m 

A 

system 

A 
 

B 
 

system, collision between A and B  

 

A 
 

B 
 

A 
 

t = 0 s 

t = 1 s 

t = 2 s 

t = 3 s 

t = 4 s 

t = 5 s 

2m 

t = 2 s t = 0 s 

B  

B 

2m 

t = 4 s 

system 

 

2m 

t = 6 s 

B 
 

A 
 

system 

 

B 
 

A 
 

system 

 

B 
 

A 
 

system 

 t = 6 s COM 

COM 

Elastic so relative speed of approach 

= relative speed of separation 

 

( )

( ) ( )

A B A

B A

A

1

B

   2

 sub 1  i

20

0

2

n 2 :

 cm s0

v v

v v ___

v

u

v −

−

−=

=

=

=





  

 

Considering momentum of 
system: 
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Newton’s 1st Law of motion 

an object continues at rest or with constant velocity 

unless acted upon by a resultant force 

force 

rate of change 

 of momentum 

  

linear momentum 

product of  

mass and velocity 
  

Newton’s 2nd Law of motion 

rate of change of momentum of a body 

is directly proportional to the resultant 

force acting on it and in the direction of 

the resultant force 

 

proportionality  

constant = 1 

 
constant mass 

impulse 

product of force and  

time duration of impact 

 

  

area under  

force-time graph  

gives impulse 

 

varying force 

Newton’s 3rd Law of motion 

when body A exerts a force on body B, 

body B exerts on body A, a force of 

same type, equal in magnitude and 

opposite in direction 
Principle of Conservation of Linear Momentum 

total linear momentum of an  

isolated system of interacting bodies  

before and after collision remains constant  

if no net external force acts on the system 

  

2 bodies mutually exert force for same duration 

centre-of-mass has 

constant velocity 

  

no net force, 

constant p 

consider as 1  

system 

elastic collision 

total kinetic energy of system of bodies 

before and after collision remains the same 

  

relative speed of approach =  

relative speed of separation 

  special result, use   

inelastic collision 

total kinetic energy of  

system not conserved 

perfectly inelastic collision 

masses stick together after collision 

 

 



 

 

H203 Dynamics closes off an important milestone in Physics thus far 

because it requires putting together knowledge from the past few topics 

(Forces, Work Energy & Power, and Kinematics). Together, the topics form 

a foundation of Mechanics, which will be completed with the next topic H206 

Motion in a Circle. Do digest the material carefully.  

 

The space below is for your own summary mind-map.  

 

 

 

 

 

 

 

 

 

 

 

 


