

RAFFLES INSTITUTION RAFFLES PROGRAMME 2024 YEAR 3 MATHEMATICS MID-YEAR HOLIDAY ASSIGNMENT 1

Total mark: 40 marks					Duration: 1 hour
Name:	()	Class: 3()	Date:

Topic 1: Surds

1 Given that
$$\left(2-5\sqrt{2}+\frac{4}{3-2\sqrt{2}}\right)\left(3-\sqrt{2}\right)=a+b\sqrt{2}$$
, find the value of a and of b . [3]

[Ans:
$$a = 36, b = -5$$
]

2 Solve
$$\sqrt{3x-3} + \sqrt{2x-4} = \sqrt{6x+1}$$
. [3]

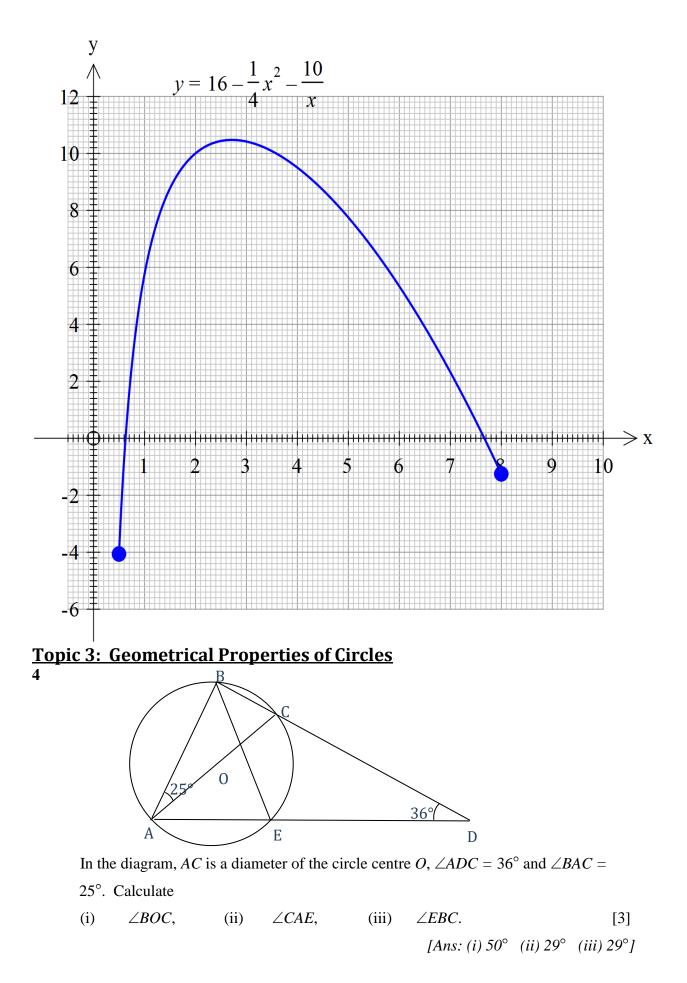
[Ans: x = 4]

Topic 2: Graphical Solutions of Equations

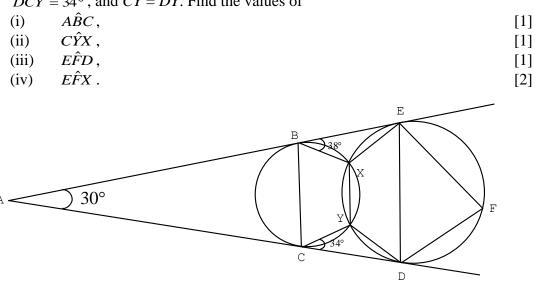
3 The diagram shows part of the graph of $y=16-\frac{1}{4}x^2-\frac{10}{x}$ for $\frac{1}{2} \le x \le 8$ (on P.2).

(a) Find, from the graph,

(i) the solutions of the equation
$$14 - \frac{1}{4}x^2 - \frac{10}{x} = 0$$
, [2]


(ii) the range of values of x for which
$$64 - x^2 - \frac{40}{x} \ge 16 - 2x$$
. [3]

(b) By drawing a tangent, find the gradient of the graph at the point where
$$x = 5$$
.


[2]

(c) By adding a suitable straight line to your graph, solve the equation

$$x^3 + 8x^2 - 52x + 40 = 0.$$
 [3]
[Ans: (a)(i) $x = 0.7$ or 7 (ii) $0.8 \le x \le 7.6$ (b) -2.11 (c) $x = 0.9$ or 3.5]

In the diagram, *AE* is a tangent to the two circles at *B* and *E*. Similarly, AD is a tangent to the two circles at *C* and *D*. Given that $C\hat{A}B = 30^\circ$, $E\hat{B}X = 38^\circ$, $D\hat{C}Y = 34^\circ$, and CY = DY. Find the values of

[[]Ans: (i) 75°(ii) 113°(iii) 75° (iv) 30°]

Topic 4: Quadratic Functions

5

6	(a)	By completing the square, find the maximum value of $y=5-4x-x^2$ and state		
		the value of <i>x</i> when this occurs. [3]		
	(b)	Sketch the graph of $y=5-4x-x^2$, showing clearly the maximum point and		
		intercepts with the axes. [3]		
		[Ans: (a) max $y = 9$ when $x = -2$]		
7	(a)	Find the least value of k for which $x(x+k) - k$ is never negative for all real		

(b) values of x. [3] (b) Prove that the line y = 3x + m will meet the curve $y = mx^2 + x + 2$ for all real values of m. [3]

[Ans: (a) –4]

Topic 6: Binomial Theorem

8 (i) Write down and simplify, in ascending powers of x, the first three terms in the expansion of $\left(2-\frac{x}{4}\right)^9$. [2]

(ii) Hence, find the coefficient of x^2 in the expansion of $(1-x)(2+x)\left(2-\frac{x}{4}\right)^9$. [2]

[Ans: (i)
$$512-576x+288x^2$$
 (ii) 640]