APQ: Vectors II (The Scalar and Vector Products of Vectors)

1. MJC/2017/Prelim/I/Q4(a)

The points A and B relative to the origin O have position vectors $3\mathbf{i} - \mathbf{j} + 3\mathbf{k}$ and $-3\mathbf{i} + 2\mathbf{j}$ respectively.

- (i) Find the angle between \overrightarrow{OA} and \overrightarrow{OB} . [2]
- (ii) Using the result in part (i), find the shortest distance from *B* to line *OA*. [2]

(i) Let θ be the angle between \overrightarrow{OA} and \overrightarrow{OB} .

= 2.58 units (3 s.f)

$$\cos \theta = \frac{\begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix} \begin{pmatrix} -3 \\ 2 \\ 0 \end{pmatrix}}{\begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix} \begin{pmatrix} -3 \\ 2 \\ 0 \end{pmatrix}}$$

$$\theta = \cos^{-1} \left(\frac{-11}{\sqrt{19}\sqrt{13}}\right) = 134.4^{\circ} \quad (1 \text{ d.p}) = 2.35 \text{ radian } (3 \text{ s.f})$$

(ii) Let *h* be the shortest distance from *B* to line *OA*.
$$\sin 134.42^{\circ} = \frac{h}{|\mathbf{b}|}$$

$$h = \sqrt{13} \sin 134.42^{\circ}$$

$$= 2.5752$$

2. PJC/2018/MYE/P2/Q1

Referred to the origin *O*, the points *A* and *B* are such that $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. The point M is on AB produced such that AB: BM = 3:2 and the point N is on OB such that ON: NB = 1:2. It is given that $|\mathbf{a}| = 3$, **b** is a unit vector and $\angle AOB = 60^{\circ}$.

Find *OM* in terms of **a** and **b**. (i)

- [2]
- Show that the area of triangle OMN can be written as $k |\mathbf{a} \times \mathbf{b}|$, where k is a (ii) constant to be found. Hence evaluate the exact area of triangle OMN. [4] [3]

 $=\frac{1}{3}$

(iii) Find the length of projection OM onto ON.

(i) Using Ratio Theorem,
$$\overrightarrow{OB} = \frac{2\overrightarrow{OA} + 3\overrightarrow{OM}}{5}$$

 $\overrightarrow{SOB} = 2\overrightarrow{OA} + 3\overrightarrow{OM}$
 $\overrightarrow{3OM} = \overrightarrow{5OB} - 2\overrightarrow{OA}$
 $\overrightarrow{OM} = \frac{1}{3}(\overrightarrow{5OB} - 2\overrightarrow{OA}) = \frac{1}{3}(5\mathbf{b} - 2\mathbf{a})$
(ii) Area of triangle *OMN*
 $= \frac{1}{2}|\overrightarrow{OM} \times \overrightarrow{ON}|$
 $= \frac{1}{2}|\overrightarrow{OM} \times \overrightarrow{ON}|$
 $= \frac{1}{2}|\overrightarrow{a}(5\mathbf{b} - 2\mathbf{a}) \times \frac{1}{3}\mathbf{b}|$
 $= \frac{1}{9}|\mathbf{a} \times \mathbf{b}|$, $k = \frac{1}{9}$
 $= \frac{1}{9}|\mathbf{a}||\mathbf{b}|\sin\theta\hat{\mathbf{n}}|$
 $= \frac{1}{9}(3)(1)\sin60^{\circ}$
 $= \frac{\sqrt{3}}{6}$
(iii) Length of projection of *OM* on *ON*
 $= |\overrightarrow{OM} \cdot \overrightarrow{ON}|$
 $= \frac{1}{3}(5\mathbf{b} \cdot \mathbf{b} - 2\mathbf{a} \cdot \mathbf{b}|$
 $= \frac{1}{3}|5\mathbf{b} \cdot \mathbf{b} - 2\mathbf{a} \cdot \mathbf{b}|$
 $= \frac{1}{3}|5\mathbf{b}|^2 - 2|\mathbf{a}||\mathbf{b}|\cos 60^{\circ}|$
 $= \frac{1}{3}|5 - 2(3)(1)\frac{1}{2}|$
 $= \frac{2}{3}$

3. CJC Mid Year 9758/2021/3 (modified)

The vectors **a** and **b** are such that $\mathbf{a} \times \mathbf{b} = 2(q+3)\mathbf{i} + (p-2)\mathbf{j} + p(q+3)\mathbf{k}$ and $\mathbf{a} \cdot \mathbf{b} = -\frac{1}{8}$ where *p* and *q* are non-zero constants. It is given that **b** is a unit vector. (a) If p=2 and q=-3, state the relationship between **a** and **b**. [1]

(b) (i) Show that
$$\left(4\mathbf{a} + \frac{1}{2}\mathbf{b}\right) \times \left(2\mathbf{a} - \frac{3}{2}\mathbf{b}\right) = -14(q+3)\mathbf{i} - 7(p-2)\mathbf{j} - 7p(q+3)\mathbf{k}$$
. [2]

(ii) If
$$p = 1$$
 and $\left(4\mathbf{a} + \frac{1}{2}\mathbf{b} \right) \times \left(2\mathbf{a} - \frac{3}{2}\mathbf{b} \right) = 112$, find the exact values of q . [2]

(iii) Given instead that
$$4\mathbf{a} + \frac{1}{2}\mathbf{b}$$
 and $2\mathbf{a} - \frac{3}{2}\mathbf{b}$ are perpendicular, find the value of $|\mathbf{a}|$.
[3]

(a) The vectors
$$q$$
 and b are parallel
(b)(i) $\left(4\mathbf{a} + \frac{1}{2}\mathbf{b}\right) \times \left(2\mathbf{a} - \frac{3}{2}\mathbf{b}\right)$
 $= 8\mathbf{a} \times \mathbf{a} - 6\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{a} - \frac{3}{4}\mathbf{b} \times \mathbf{b}$
 $= 0 - 6\mathbf{a} \times \mathbf{b} - \mathbf{a} \times \mathbf{b} - 0$
 $= -7\mathbf{a} \times \mathbf{b}$
 $= -7[2(q+3)\mathbf{i} + (p-2)\mathbf{j} + p(q+3)\mathbf{k}]$
 $= 14(q+3)\mathbf{i} - 7(p-2)\mathbf{j} - 7p(q+3)\mathbf{k}$
(ii) When $p = 1$,
(iii) $\left|-7[2(q+3)\mathbf{i} - \mathbf{j} + 2(q+3)\mathbf{k}]\right| = 112$
 $7\sqrt{[2(q+3)]^2 + (-1)^2 + (q+3)^2} = 112$
 $\sqrt{4(q+3)^2 + 1 + (q+3)^2} = 16$
 $5(q+3)^2 + 1 = 16^2$
 $5(q+3)^2 = 255$
 $(q+3)^2 = 51$
 $q = -3\pm\sqrt{51}$
(iii) $\left(4\mathbf{a} + \frac{1}{2}\mathbf{b}\right) \left(2\mathbf{a} - \frac{3}{2}\mathbf{b}\right) = 0$

$8\underline{a}\cdot\underline{a}-6\underline{a}\cdot\underline{b}+\underline{b}\cdot\underline{a}-\frac{3}{4}\underline{b}\cdot\underline{b}=0$
$8\left \underline{a}\right ^2 - 5\underline{a}\cdot\underline{b} - \frac{3}{4}\left \underline{b}\right ^2 = 0$
$8 a ^{2} = \frac{3}{4}(1)^{2} + 5\left(-\frac{1}{8}\right)$
$=\frac{1}{8}$
$ \underline{a} = \frac{1}{8}$

4. TJC Mid Year 9758/20201/P1/Q5 (modified) Referred to the origin *O*, the position vectors of points *A* and *B* are **a** and **b** respectively. Given **a** is a unit vector, $|\mathbf{b}| = 2$ and $\angle AOB = 120^{\circ}$. (i) Find $|\mathbf{a}+3\mathbf{b}|^2$. [3]

(ii) Find
$$|(\mathbf{a}+3\mathbf{b})\times(3\mathbf{a}-\mathbf{b})|$$
 and state a geometrical interpretation of $|(\mathbf{a}+3\mathbf{b})\times(3\mathbf{a}-\mathbf{b})|$.[3]

A point *E* lies on the line *AB* such that *OE* is perpendicular to *AB*.
(iii) Find the position vector of *E*, in terms of **a** and **b**.

(i)
$$|\mathbf{a}+3\mathbf{b}|^2 = (\mathbf{a}+3\mathbf{b})\cdot(\mathbf{a}+3\mathbf{b})$$

 $= \mathbf{a}\cdot\mathbf{a}+3(\mathbf{a}\cdot\mathbf{b})+3(\mathbf{b}\cdot\mathbf{a})+9(\mathbf{b}\cdot\mathbf{b})$
 $= |\mathbf{a}|^2+6(\mathbf{a}\cdot\mathbf{b})+9|\mathbf{b}|^2$
 $= 1+6|\mathbf{a}||\mathbf{b}|\cos 120^\circ + 9(2)^2$
 $= 1-6+36=31$
Need to see $\mathbf{a}\cdot\mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos 120^\circ = -1$
Alternative:
Use Cosine rule
 $|\mathbf{a}+3\mathbf{b}|^2 = |\mathbf{a}|^2+|3\mathbf{b}|^2-2|\mathbf{a}||3\mathbf{b}|\cos 60^\circ$
 $= 1+3^2(2^2)-6(1)(2)(\frac{1}{2})=31$

(iii)
$$\begin{vmatrix} (\mathbf{a}+3\mathbf{b}) \times (3\mathbf{a}-\mathbf{b}) | = |3(\mathbf{a}\times\mathbf{a}) - (\mathbf{a}\times\mathbf{b}) + 9(\mathbf{b}\times\mathbf{a}) - 3(\mathbf{b}\times\mathbf{b})| \\ = |-(\mathbf{a}\times\mathbf{b}) - 9(\mathbf{a}\times\mathbf{b})| \\ = |-10(\mathbf{a}\times\mathbf{b})| = 10|\mathbf{a}\times\mathbf{b}| = 20\left(\frac{1}{2}|\mathbf{a}\times\mathbf{b}|\right) \\ = 10|\mathbf{a}||\mathbf{b}|\sin 120^{\circ} \\ = 10(1)(2)\left(\frac{\sqrt{3}}{2}\right) = 10\sqrt{3} \\ \begin{vmatrix} (\mathbf{a}+3\mathbf{b}) \times (3\mathbf{a}-\mathbf{b}) \end{vmatrix} \text{ represents 20 times the area of the triangle OAB OR It is the 10 times the area of the parallelogram formed by adjacent sides OA and OB (iii) Let $\overrightarrow{OE} = \mathbf{a} + \lambda(\mathbf{b}-\mathbf{a}), \ \lambda \in \mathbb{R}$ since E lies on line *AB*
OR by ratio thm since E lies on line $AB \Rightarrow A, B$ and *E* are collinear:
 $\overrightarrow{OE} = \lambda \mathbf{b} + (1-\lambda) \mathbf{a}$
Given \overrightarrow{OE} is perpendicular to \overrightarrow{AB}
 $\overrightarrow{OE} \cdot (\mathbf{b}-\mathbf{a}) = 0$
 $(\lambda(4) - \lambda(-1) + (1-\lambda)(-1) - (1-\lambda)(1) = 0$
 $4\lambda + \lambda - 2 + 2\lambda = 0$
 $7\lambda = 2$
 $\lambda = \frac{2}{7}$
 $\overrightarrow{OE} = \frac{5}{7}\mathbf{a} + \frac{2}{7}\mathbf{b}$$$