

Tampines Meridian Junior College 2024 H2 Mathematics (9758) Chapter 6A 3D Vector Geometry (Lines) Learning Package

## Resources

- $\Box$  Core Concept Notes
- $\Box$  Discussion Questions

## **SLS Resources**

- $\Box$  Recordings on Core Concepts
- □ Quick Concept Checks

# **Reflection or Summary Page**



## H2 Mathematics (9758) Chapter 6A 3D Vector Geometry (Lines) Core Concept Notes

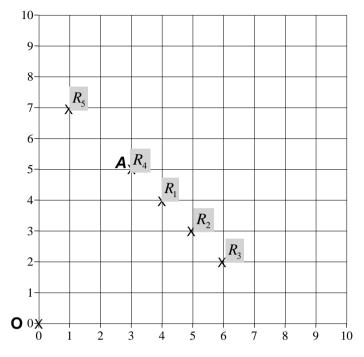
## Success Criteria:

| Su | rface Learning                                                                                                                                                                                                                                                                                  | De | eep Learning                                                                                                                                                                                                                              | Tr | ansfer Learning                                                                                               |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------------------|
|    | Interpret and find equations of<br>lines in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{d}$<br>(vector equation) or<br>$\frac{x-a}{l} = \frac{y-b}{m} = \frac{z-c}{n}$ (cartesian<br>equation)<br>Convert the equations from one<br>form to another<br>Determine the relationship (i.e. |    | Find the point of<br>intersection of two lines<br>if they intersect<br>Find the length of<br>projection of a vector<br>onto a given line<br>Find the foot of the<br>perpendicular and<br>perpendicular distance<br>from a point to a line |    | Find the<br>reflection of a<br>point in a line<br>Interpret given<br>information in<br>contextual<br>question |
|    | intersecting, parallel or skew)<br>between two lines                                                                                                                                                                                                                                            |    |                                                                                                                                                                                                                                           |    |                                                                                                               |
|    | Explain that two lines are<br>coplanar if they are intersecting<br>or parallel                                                                                                                                                                                                                  |    |                                                                                                                                                                                                                                           |    |                                                                                                               |
|    | Find the angle between two lines                                                                                                                                                                                                                                                                |    |                                                                                                                                                                                                                                           |    |                                                                                                               |

## **Pre Reading**

Look through the following 2 examples BEFORE the first Independent Learning module on Chapter 6A in SLS.

1.



Using the grid, draw the following vectors, marking the points  $R_1$ ,  $R_2$ ,  $R_3$ ,  $R_4$  and  $R_5$ .

(a)  $\overrightarrow{OR_1} = \overrightarrow{OA} + \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ (b)  $\overrightarrow{OR_2} = \overrightarrow{OA} + 2 \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ (c)  $\overrightarrow{OR_3} = \overrightarrow{OA} + 3 \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ (d)  $\overrightarrow{OR_4} = \overrightarrow{OA} + 0 \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ (e)  $\overrightarrow{OR_5} = \overrightarrow{OA} - 2 \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ 

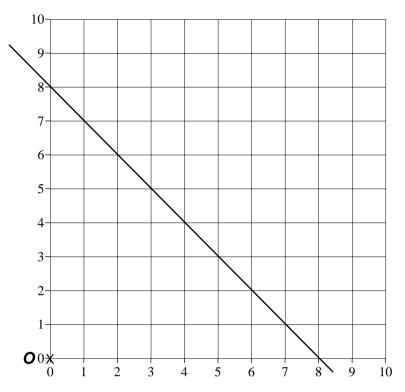
(i) Join the points 
$$R_1$$
,  $R_2$ ,  $R_3$ ,  $R_4$  and  $R_5$ . What do they form? (A line segment)

(ii) What is the geometrical representation of the following equation?

$$\overrightarrow{OR} = \overrightarrow{OA} + \lambda \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \ \lambda \in \mathbb{R} \ .$$

Position vector of a point on the line that passes through point A and is parallel to  $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ .

2.



The position vector of any point from the line is given in the form

$$\mathbf{r} = \begin{pmatrix} a \\ b \end{pmatrix} + \lambda \begin{pmatrix} c \\ d \end{pmatrix}$$
, where  $\lambda \in \mathbb{R}$ .

(i) State 2 possible values of 
$$\begin{pmatrix} a \\ b \end{pmatrix}$$
.

Just provide the column vector of ANY point on the line. Possible values of  $\begin{pmatrix} a \\ b \end{pmatrix}$  are  $\begin{pmatrix} 0 \\ 8 \end{pmatrix}, \begin{pmatrix} 3 \\ 5 \end{pmatrix}, \begin{pmatrix} 6 \\ 2 \end{pmatrix}$  etc

(ii) State 2 possible values of  $\begin{pmatrix} c \\ d \end{pmatrix}$ . What does  $\frac{d}{c}$  represent?

Possible values of  $\begin{pmatrix} c \\ d \end{pmatrix}$  are  $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$  or  $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ .  $\frac{d}{c}$  represents the <u>gradient</u> of the straight line.

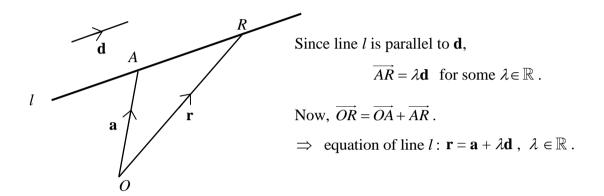
## §1 Equation of Line

## 1.1 <u>Vector Equation of a Line</u>

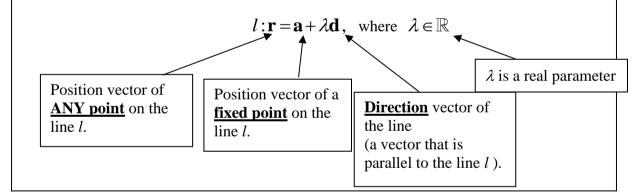
In 3-dimensional space, a straight line is uniquely located in space if it has a known direction and passes through a known fixed point.

Consider a straight line l passing through a fixed point A with position vector  $\mathbf{a}$  and which is parallel to a given vector  $\mathbf{d}$ .

Let *R* be any point on the line, and  $\mathbf{r}$  be the position vector of *R*.



**Vector equation** of the line l in parametric form which passes through the point with position vector **a** and parallel to the vector **d** is given by:



## <u>Note</u>

- (i) Each value of  $\lambda$  gives the position vector of a different point on the line.
- (ii) If a point *R* lies on the line *l* with equation  $\mathbf{r} = \mathbf{a} + \lambda \mathbf{d}$ , then the position vector of the point *R* is given by:

$$\overrightarrow{OR} = \mathbf{a} + \lambda \mathbf{d}$$
 for some  $\lambda \in \mathbb{R}$ .

- (iii) An equation of this form  $\mathbf{r} = \lambda \mathbf{d}$ ,  $\lambda \in \mathbb{R}$  represents a line passing through the origin.
- (iv) Is the vector equation of a line unique? No. Why?

## Example 1

Find a vector equation of the line passing through A(1,-1,2) and parallel to the vector  $3\mathbf{i} + \mathbf{k}$ .

## Solution:

ſ

|                                                       | (1) |            | (3) |                              |
|-------------------------------------------------------|-----|------------|-----|------------------------------|
| A vector equation of the line is $l$ : $\mathbf{r} =$ | -1  | $+\lambda$ | 0   | , $\lambda \in \mathbb{R}$ . |
| A vector equation of the line is $l$ : $\mathbf{r} =$ | 2   | )          | (1) |                              |

The line passing through point *A* and parallel to vector  $\underline{b}$  has equation  $\underline{r} = \underline{a} + \lambda \underline{b}$ ,  $\lambda \in \mathbb{R}$ 

| Discussion: | What are the equations of the <i>x</i> -axis, <i>y</i> -axis and <i>z</i> -axis? |                                                                                                                                             |                                                                                                       |  |  |  |
|-------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|
|             | <i>x</i> -axis :                                                                 | $l_{x}: \mathbf{r} = \begin{pmatrix} 0\\0\\0 \end{pmatrix} + \alpha \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \ \alpha \in \mathbb{R}$         | The <i>x</i> -axis passes through point $(0,0,0)$ and parallel $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ |  |  |  |
|             | y-axis :                                                                         | $l_{y}: \mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ \beta \in \mathbb{R}$   | to vector $\begin{bmatrix} 0\\ 0 \end{bmatrix}$ .                                                     |  |  |  |
|             | z-axis :                                                                         | $l_{z}: \mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \gamma \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \ \gamma \in \mathbb{R}$ |                                                                                                       |  |  |  |

TMJC 2024

## Example 2

Find a vector equation of the line through A(5,2,7) and B(-3,6,3). Determine whether the points C(-7,8,1) and D(1,2,4) lie on the line.

## Solution:

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$
$$= \begin{pmatrix} -8\\4\\-4 \end{pmatrix} = -4 \begin{pmatrix} 2\\-1\\1 \end{pmatrix}$$

$$\Rightarrow a \text{ direction vector for the line is } \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

Therefore, a vector equation of the line *AB* is  $\mathbf{r} = \begin{pmatrix} 5\\2\\7 \end{pmatrix} + \lambda \begin{pmatrix} 2\\-1\\1 \end{pmatrix}$ ,  $\lambda \in \mathbb{R}$ .

OR 
$$\mathbf{r} = \begin{pmatrix} 5\\2\\7 \end{pmatrix} + \beta \begin{pmatrix} -8\\4\\-4 \end{pmatrix}$$
,  $\beta \in \mathbb{R}$   
OR  $\mathbf{r} = \begin{pmatrix} -3\\6\\3 \end{pmatrix} + s \begin{pmatrix} 2\\-1\\1 \end{pmatrix}$ ,  $s \in \mathbb{R}$   
OR  $\mathbf{r} = \begin{pmatrix} -3\\6\\3 \end{pmatrix} + t \begin{pmatrix} -8\\4\\-4 \end{pmatrix}$ ,  $t \in \mathbb{R}$ 

$$\begin{pmatrix} -7\\8\\1 \end{pmatrix} = \begin{pmatrix} 5\\2\\7 \end{pmatrix} + \lambda \begin{pmatrix} 2\\-1\\1 \end{pmatrix} \implies \lambda \begin{pmatrix} 2\\-1\\1 \end{pmatrix} = \begin{pmatrix} -7\\8\\1 \end{pmatrix} - \begin{pmatrix} 5\\2\\7 \end{pmatrix} \implies \lambda \begin{pmatrix} 2\\-1\\1 \end{pmatrix} = \begin{pmatrix} -12\\6\\-6 \end{pmatrix} \qquad \checkmark$$

Since  $\lambda = -6$  satisfies the equation, *C* lies on the line *AB*.

$$\begin{pmatrix} 1\\2\\4 \end{pmatrix} = \begin{pmatrix} 5\\2\\7 \end{pmatrix} + \lambda \begin{pmatrix} 2\\-1\\1 \end{pmatrix} \implies \lambda \begin{pmatrix} 2\\-1\\1 \end{pmatrix} = \begin{pmatrix} 1\\2\\4 \end{pmatrix} - \begin{pmatrix} 5\\2\\7 \end{pmatrix}$$
$$\implies \lambda \begin{pmatrix} 2\\-1\\1 \end{pmatrix} = \begin{pmatrix} -4\\0\\-3 \end{pmatrix} \implies \lambda = 0$$
$$\lambda = -3$$

To determine if a point C lies on the line  $\underline{r} = \underline{a} + \lambda \underline{d}$ ,  $\lambda \in \mathbb{R}$ . Check if there exists a real value of  $\lambda$  that satisfies the equation  $\overrightarrow{OC} = \underline{a} + \lambda \underline{d}$ . If Yes, C lies on the line. Otherwise, C does not lie on the line.

Since no consistent value of  $\lambda$  satisfies the equation, D does not lie on the line AB.

#### 1.2 **Parametric and Cartesian Forms**

Let 
$$\mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
,  $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$  and  $\mathbf{d} = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}$ .

Then from  $\mathbf{r} = \mathbf{a} + \lambda \mathbf{d}$ ,  $\lambda \in \mathbb{R}$ , we have:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}, \lambda \in \mathbb{R} - - \mathbb{O}$$

This is known as the *vector equation (form)* of the line.

From ② if we equate the **i**, **j** and **k** components, we have:

$$x = a_1 + \lambda d_1$$
,  $y = a_2 + \lambda d_2$ ,  $z = a_3 + \lambda d_3$ ,  $\lambda \in \mathbb{R} - -- \Im$ 

From  $\Im$  if we make  $\lambda$  the subject throughout, we obtain:

$$\frac{x-a_1}{d_1} = \frac{y-a_2}{d_2} = \frac{z-a_3}{d_3} \qquad (=\lambda)$$

This is known as the *cartesian equation (form)* of the line.

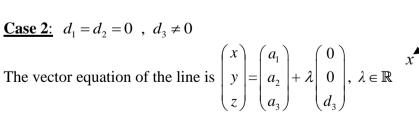
**Special Cases:** What happens when  $d_1 = 0$  or/and  $d_2 = 0$  or/and  $d_3 = 0$ ?

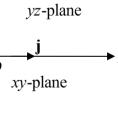
**<u>Case 1</u>**:  $d_1 = 0$  ,  $d_2 \neq 0$  ,  $d_3 \neq 0$ 

The vector equation of the line is 
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ d_2 \\ d_3 \end{pmatrix}, \ \lambda \in \mathbb{R}.$$

(2) ( $u_3$ ) ( $u_3$ ) The cartesian equation of the line is  $x = a_1$ ,  $\frac{y - a_2}{d_2} = \frac{z - a_3}{d_3}$ . xz-plane **k** yz-plane This line is parallel to the *yz* -plane.

Case 2: 
$$d_1 = d_2 = 0$$
 ,  $d_3 \neq 0$ 





The cartesian equation of the line is  $x = a_1$ ,  $y = a_2$ ,  $z = a_3 + \lambda d_3$ . This line is parallel to the *z*-axis.

<u>**Case 3**</u>:  $d_1 = d_2 = d_3 = 0$ . This gives you a point with position vector  $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ , not a straight line!

## Example 3

Write down the Cartesian equations of  $l_1$  and  $l_2$  where

$$l_{1}: \mathbf{r} = \begin{pmatrix} 1\\ 1\\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 2\\ 3\\ 1 \end{pmatrix}, \lambda \in \mathbb{R} \quad \text{and} \quad l_{2}: \mathbf{r} = \begin{pmatrix} 1\\ 1\\ -4 \end{pmatrix} + \mu \begin{pmatrix} 2\\ 0\\ 1 \end{pmatrix}, \mu \in \mathbb{R} .$$
Solution:  
(a)  $l_{1}: \mathbf{r} = \begin{pmatrix} 1\\ 1\\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 2\\ 3\\ 1 \end{pmatrix}, \lambda \in \mathbb{R}$ 
The Cartesian equation of  $l_{1}$  is  $\frac{x-1}{2} = \frac{y-1}{3} = z+4$  ( $\lambda \in \mathbb{R}$ )  
(b)  $l_{2}: \mathbf{r} = \begin{pmatrix} 1\\ 1\\ -4 \end{pmatrix} + \mu \begin{pmatrix} 2\\ 0\\ 1 \end{pmatrix}, \mu \in \mathbb{R}$ 
Note the j component of direction vector is 0.  
The Cartesian equation of  $l_{2}$  is  $\frac{x-1}{2} = z+4$ ,  $y = 1$  ( $\mu \in \mathbb{R}$ )  
The Cartesian equation of  $l_{2}$  is  $\frac{x-1}{2} = z+4$ ,  $y = 1$  ( $\mu \in \mathbb{R}$ )  
The Cartesian equation of  $l_{2}$  is  $\frac{x-1}{2} = z+4$ ,  $y = 1$  ( $\mu \in \mathbb{R}$ )  
Example 4  
Find the vector equations of  $l_{1}$  and  $l_{2}$  where  
 $l_{1}: \frac{x-1}{2} = \frac{y+2}{3} = z$  and  $l_{2}: x = 3$ ,  $2y+1 = \frac{z+1}{5}$ .

## Solution:

Strategy: Introduce a parameter  $\lambda$  and make x, y, z the subject

$$l_{1}: \frac{x-1}{2} = \frac{y+2}{3} = z = \lambda \implies \begin{cases} x = 1+2\lambda \\ y = -2+3\lambda \\ z = \lambda \end{cases}$$
  
Since  $\mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ , vector equation of  $l_{1}$  is  $\mathbf{r} = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ ,  $\lambda \in \mathbb{R}$ .

Equate Cartesian equation to  $\lambda$  and make x, y, z the subject. Rearrange to Vector Equation of line  $\underline{r} = \underline{a} + \lambda \underline{d}$ ,  $\lambda \in \mathbb{R}$ .

Г

$$l_{2}: x = 3 , \quad 2y+1 = \frac{z+1}{5} = \beta \implies \begin{cases} x = 3 \\ y = \frac{-1+\beta}{2} \\ z = -1+5\beta \end{cases}$$
  
$$\therefore \text{ vector equation of } l_{2} \text{ is: } \mathbf{r} = \begin{pmatrix} 3 \\ -\frac{1}{2} \\ -1 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ \frac{1}{2} \\ 5 \end{pmatrix}, \quad \beta \in \mathbb{R}$$

## §2 <u>Relationship Between Two Lines</u>

Two lines in **3-dimensional space** can be

- (i) Intersecting e.g. AC, DB
- (ii) Parallel e.g. AC, EG
- (iii) Non-intersecting and non-parallel (skew lines) e.g. *AC* and *HF*

Note that

- the intersecting lines in case (i) are **coplanar**, i.e. they are on the same plane.
- the parallel lines in case (ii) are coplanar, i.e. they are on the same plane.

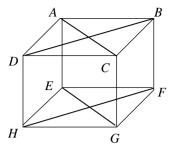
Consider two lines whose equations are:

$$l_1: \mathbf{r} = \mathbf{a}_1 + \lambda \, \mathbf{d}_1 \,, \, \lambda \in \mathbb{R}$$
$$l_2: \mathbf{r} = \mathbf{a}_2 + \mu \, \mathbf{d}_2 \,, \, \mu \in \mathbb{R}$$

If two non-parallel lines  $l_1$  and  $l_2$  intersect at point *P*, then unique values of  $\lambda$  and  $\mu$  can be found such that

$$OP = \mathbf{a}_1 + \lambda \, \mathbf{d}_1 = \mathbf{a}_2 + \mu \, \mathbf{d}_2.$$

| Parallel Lines | 2 lines are parallel if their direction vectors are parallel.                                                    |  |  |  |  |
|----------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                |                                                                                                                  |  |  |  |  |
|                | $l_1 : \mathbf{r} = \mathbf{a}_1 + \lambda \mathbf{d}_1$ $l_2 : \mathbf{r} = \mathbf{a}_2 + \mu \mathbf{d}_2$    |  |  |  |  |
|                | $l_2:\mathbf{r}=\mathbf{a}_2+\mu\mathbf{d}_2$                                                                    |  |  |  |  |
|                | are parallel if $\mathbf{d}_1 = k\mathbf{d}_2$ for some $k \in \mathbb{R}$ .                                     |  |  |  |  |
|                | Furthermore, $l_1$ and $l_2$ are distinct if there does not exist a unique value                                 |  |  |  |  |
|                | of $\mu$ such that $\mathbf{a}_1 = \mathbf{a}_2 + \mu \mathbf{d}_2$ .                                            |  |  |  |  |
| Intersecting   | 2 lines intersect at a point.                                                                                    |  |  |  |  |
| Lines          |                                                                                                                  |  |  |  |  |
|                | $l_1:\mathbf{r}=\mathbf{a}_1+\lambda\mathbf{d}_1$                                                                |  |  |  |  |
|                | $l_1 : \mathbf{r} = \mathbf{a}_1 + \lambda \mathbf{d}_1$ $l_2 : \mathbf{r} = \mathbf{a}_2 + \mu \mathbf{d}_2$    |  |  |  |  |
|                | intersect if there is a unique pair of $\lambda$ and $\mu$ for which                                             |  |  |  |  |
|                | $\mathbf{a}_1 + \lambda \mathbf{d}_1 = \mathbf{a}_2 + \mu \mathbf{d}_2 .$                                        |  |  |  |  |
| Skew Lines     | 2 lines are skew lines if they are non-parallel and non-intersecting.                                            |  |  |  |  |
|                |                                                                                                                  |  |  |  |  |
|                | $l_1:\mathbf{r}=\mathbf{a}_1+\lambda\mathbf{d}_1$                                                                |  |  |  |  |
|                | $l_1 : \mathbf{r} = \mathbf{a}_1 + \lambda \mathbf{d}_1$<br>$l_2 : \mathbf{r} = \mathbf{a}_2 + \mu \mathbf{d}_2$ |  |  |  |  |
|                |                                                                                                                  |  |  |  |  |
|                | are skew lines if                                                                                                |  |  |  |  |
|                | (i) $\mathbf{d}_1$ is not parallel to $\mathbf{d}_2$ <u>AND</u>                                                  |  |  |  |  |
|                | (ii) $l_1$ and $l_2$ do not intersect i.e. there does not exist unique values of $\lambda$                       |  |  |  |  |
|                | and $\mu$ such that $\mathbf{a}_1 + \lambda \mathbf{d}_1 = \mathbf{a}_2 + \mu \mathbf{d}_2$ .                    |  |  |  |  |



## Example 5

Determine whether the following pairs of lines are parallel, intersecting or skew. (a)  $l: \mathbf{r} = \mathbf{i} + \mathbf{i} + 2\mathbf{k} + \lambda(3\mathbf{i} - 2\mathbf{i} + 4\mathbf{k}) : l: \mathbf{r} = 2\mathbf{i} - \mathbf{i} + 3\mathbf{k} + \mu(-6\mathbf{i} + 4\mathbf{i} - 8\mathbf{k}) \cdot \lambda \mu$ 

(a) 
$$l_1: \mathbf{r} = \mathbf{i} + \mathbf{j} + 2\mathbf{k} + \lambda (3\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}) ; l_2: \mathbf{r} = 2\mathbf{i} - \mathbf{j} + 3\mathbf{k} + \mu (-6\mathbf{i} + 4\mathbf{j} - 8\mathbf{k}), \lambda, \mu \in \mathbb{R}$$
  
(b)  $l_1: \mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \lambda \in \mathbb{R}, \quad l_2: \mathbf{r} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}, \mu \in \mathbb{R}$ 

(c) 
$$l_1: \frac{x+1}{-2} = \frac{y-1}{2} = \frac{z-3}{1}; \quad l_2: \frac{x-1}{3} = \frac{y-3}{1} = \frac{z-2}{6}$$

Solution:

(a) 
$$l_1: \mathbf{r} = \begin{pmatrix} 1\\1\\2 \end{pmatrix} + \lambda \begin{pmatrix} 3\\-2\\4 \end{pmatrix}$$
 and  $l_2: \mathbf{r} = \begin{pmatrix} 2\\-1\\3 \end{pmatrix} + \mu \begin{pmatrix} -6\\4\\-8 \end{pmatrix}, \lambda, \mu \in \mathbb{R}$   
Since  $\begin{pmatrix} -6\\4\\-8 \end{pmatrix} = -2 \begin{pmatrix} 3\\-2\\4 \end{pmatrix}$   $\therefore l_1$  and  $l_2$  are parallel.  
(2 lines are parallel if their direction vectors are parallel.  
(2 lines are parallel if their direction vectors are parallel.  
(3 )  $l_1 = \begin{pmatrix} 1\\1\\2 \end{pmatrix} + \lambda \begin{pmatrix} 3\\-2\\4 \end{pmatrix}$  Since point on  $l_2$  does not satisfy equation of  $l_1$ , the 2 lines are distinct.  
(3 )  $\lambda \begin{pmatrix} 3\\-2\\4 \end{pmatrix} = \begin{pmatrix} 1\\-2\\1 \end{pmatrix} \Rightarrow$  no solution for  $\lambda$ 

 $\therefore l_1 \& l_2$  are not coincident.

Chapter 6A 3D Vector Geometry (Lines)

**(b)** Since 
$$\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
 is not parallel to  $\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ ,  $l_1$  and  $l_2$  are not parallel.

Check if  $l_1$  and  $l_2$  intersect, i.e. check if scalars  $\lambda$  and  $\mu$  can be found such that

$$\begin{pmatrix} 1\\-1\\3 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix} = \begin{pmatrix} 2\\4\\6 \end{pmatrix} + \mu \begin{pmatrix} 2\\1\\3 \end{pmatrix}$$

## Method 1: Using PlySmlt2 (SIMULT EQN SOLVER)

We can use GC to solve the system of linear equations that consists of 3 equations and 2 unknowns.

$$1 + \lambda = 2 + 2\mu \qquad -(1)$$
  

$$-1 - \lambda = 4 + \mu \qquad -(2)$$
  

$$3 + \lambda = 6 + 3\mu \qquad -(3)$$
  

$$\lambda - 2\mu = 1$$
  
Rearranging, we get  $\lambda + \mu = -5$   
 $\lambda - 3\mu = 3$ 

Using GC to solve (1), (2) and (3),  $\lambda = -3$ ,  $\mu = -2$ 

So  $l_1$  and  $l_2$  intersect at the point with position vector  $\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} + \begin{pmatrix} -3 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix}$ .

Therefore,  $l_1$  and  $l_2$  are non-parallel but intersecting lines.

| GC Keystrokes                                                                                                      | GC Screenshot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Step 1:(i)Press apps and select 6:PlySmlt2.(ii)Press enter to enter the main menu.(iii)Select 2: SIMULT EQN SOLVER | NORMAL FLOAT AUTO REAL RADIAN MP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Step 2:         (i)       Select the required parameters.         (ii)       Press graph to go NEXT.               | NORMAL FLOAT FRAC REAL DEGREE CL       Image: Close state stat |  |  |

| Step<br>(i)   | <u><b>3</b>:</u><br>Key in the entries in the matrix row by row. Enter 1, -2,1 in the 1 <sup>st</sup> row; 1,1, -5 in the 2 <sup>nd</sup> row and 1, -3,3 in the 3 <sup>rd</sup> row. | NORMAL FLOAT FRAC REAL DEGREE CL<br>PLYSMLT2 APP<br>SYSTEM MATRIX (3 × 3)<br>L 1 -2 1 1<br>L 1 1 -5 1<br>L 1 -3 3 1 |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| ( <b>ii</b> ) | Remember to press enter after keying in the last value.                                                                                                                               |                                                                                                                     |
|               | value.                                                                                                                                                                                | [SYSM](3,3)=3                                                                                                       |
| (iii)         | Press graph to SOLVE.                                                                                                                                                                 | [MAIN MODE CLEAR LOAD SOLVE]                                                                                        |
|               | tion: Using GC, $x_1 = -3$ and $x_2 = -2$ .                                                                                                                                           | NORMAL FLOAT FRAC REAL DEGREE CL<br>PLYSMLT2 APP<br>SOLUTION<br>×18-3<br>×2=-2                                      |

## Method 2

$$1+\lambda = 2+2\mu \qquad --(1)$$

$$-1-\lambda = 4+\mu \qquad --(2)$$

$$3+\lambda = 6+3\mu \qquad --(3)$$
If  $l_1$  and  $l_2$  intersect,  $\lambda = -3$ ,  $\mu = -2$   
must satisfy all 3 equations. So need to  
substitute into the 3<sup>rd</sup> unused equation  
to check.  
Sub  $\lambda = -3$ ,  $\mu = -2$  into equation (3): LHS =  $3+(-3)=0$   
RHS =  $6+3(-2)=0$  = LHS

Thus  $\lambda = -3$ ,  $\mu = -2$  also satisfies equation (3).

So  $l_1$  and  $l_2$  intersect at the point with position vector  $\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} + \begin{pmatrix} -3 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix}$ .

Therefore,  $l_1$  and  $l_2$  are non-parallel but intersecting lines.

(c) In vector form the lines are:

$$l_{1}: \mathbf{r} = \begin{pmatrix} -1\\1\\3 \end{pmatrix} + \lambda \begin{pmatrix} -2\\2\\1 \end{pmatrix} \text{ and } l_{2}: \mathbf{r} = \begin{pmatrix} 1\\3\\2 \end{pmatrix} + \mu \begin{pmatrix} 3\\1\\6 \end{pmatrix}, \lambda, \mu \in \mathbb{R}$$
  
Since  $\begin{pmatrix} -2\\2\\1 \end{pmatrix}$  is not parallel to  $\begin{pmatrix} 3\\1\\6 \end{pmatrix}, l_{1} \text{ and } l_{2} \text{ are not parallel}$ 

If 
$$l_1$$
 and  $l_2$  intersect,  $\begin{pmatrix} -1-2\lambda\\1+2\lambda\\3+\lambda \end{pmatrix} = \begin{pmatrix} 1+3\mu\\3+\mu\\2+6\mu \end{pmatrix}$ 

$$\Rightarrow -1 - 2\lambda = 1 + 3\mu \qquad -(1)$$
  

$$1 + 2\lambda = 3 + \mu \qquad -(2)$$
  

$$3 + \lambda = 2 + 6\mu \qquad -(3)$$

## Method 1: Using PlySmlt2 (SIMULT EQN SOLVER)

$$2\lambda + 2\mu = -2$$
  
Rearranging,  $2\lambda - \mu = 2$   
 $\lambda - 6\mu = -1$ 

Using GC, there are no solution for  $\lambda$  and  $\mu$  that satisfies all 3 equations. Hence  $l_1$  and  $l_2$  do not intersect.

Since  $l_1$  and  $l_2$  are non-parallel and non-intersecting, they are skew lines.

| GC Screenshot                    |                                  |  |
|----------------------------------|----------------------------------|--|
| NORMAL FLOAT AUTO REAL DEGREE MP | NORMAL FLOAT AUTO REAL DEGREE MP |  |
| SYSTEM MATRIX (3 × 3)            | COLUTION                         |  |
| 2 2 -2<br>2 -1 2<br>1 -6 -1      | NO SOLUTION FOUND                |  |
|                                  |                                  |  |
| [5YSM](1,1)=2                    |                                  |  |
| MAIN MODE CLEAR LOAD SOLVE       | MAIN MODE SYSM RREF              |  |

## Method 2

$$-1-2\lambda = 1+3\mu - (1) 1+2\lambda = 3+\mu - (2) 3+\lambda = 2+6\mu - (3)$$

Solving equations (1) and (2),  $\mu = -1$ ,  $\lambda = \frac{1}{2}$ .

To check if values obtained satisfy (or is consistent with) Equation (3):

Substituting  $\mu = -1$  and  $\lambda = \frac{1}{2}$  in (3),

LHS:  $3 + \frac{1}{2} = \frac{7}{2}$ , RHS:  $2 - 6 = -4 \neq$  LHS

Non-parallel and non-intersecting lines are skew lines.

 $\therefore l_1$  and  $l_2$  do not intersect.

Since  $l_1$  and  $l_2$  are non-parallel and non-intersecting, they are skew lines.

### §3 Angle Between Two Lines

Recall from Vectors 1 that the angle  $\theta$  between two vectors **a** and **b** is found by

$$\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$

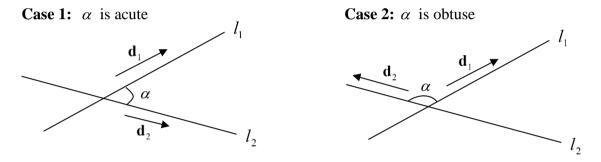
Consider two lines  $l_1$  and  $l_2$  whose vector equations are

$$l_1: \mathbf{r} = \mathbf{a}_1 + \lambda \mathbf{d}_1$$
  

$$l_2: \mathbf{r} = \mathbf{a}_2 + \mu \mathbf{d}_2$$
 where  $\lambda \in \mathbb{R}, \mu \in \mathbb{R}$ 

To find the angle between  $l_1$  and  $l_2$ , we first consider the angle  $\alpha$  between their direction vectors  $\mathbf{d}_1$  and  $\mathbf{d}_2$  using the scalar product formula

$$\cos\alpha = \frac{\mathbf{d}_1 \cdot \mathbf{d}_2}{|\mathbf{d}_1||\mathbf{d}_2|}$$



By convention, we want to find the **acute** angle  $\theta$  between  $l_1$  and  $l_2$ .

**Case 1:**  $\alpha$  is acute,  $\mathbf{d}_1 \cdot \mathbf{d}_2 > 0$  and  $\cos \alpha > 0$ , therefore  $\theta = \alpha$ 

$$\cos\theta = \frac{\mathbf{d}_1 \cdot \mathbf{d}_2}{|\mathbf{d}_1||\mathbf{d}_2|}$$

**Case 2:**  $\alpha$  is obtuse,  $\mathbf{d}_1 \cdot \mathbf{d}_2 < 0$  and  $\cos \alpha < 0$ , therefore  $\theta = 180^\circ - \alpha$ 

$$\cos \theta = \cos(180^\circ - \alpha)$$
$$= -\cos \alpha$$
$$= \frac{-\mathbf{d}_1 \cdot \mathbf{d}_2}{|\mathbf{d}_1| |\mathbf{d}_2|} \text{, where } -\mathbf{d}_1 \cdot \mathbf{d}_2 > 0$$

Combining Case 1 and 2 from above, in conclusion, the **acute** angle  $\theta$  between  $l_1$  and  $l_2$  can be found using the formula

$$\cos\theta = \left| \frac{\mathbf{d}_1 \cdot \mathbf{d}_2}{|\mathbf{d}_1| |\mathbf{d}_2|} \right|$$

**Special Case:**  $l_1$  and  $l_2$  are perpendicular ( $\theta = 90^\circ, \cos \theta = 0$ ) if and only if  $\mathbf{d}_1 \cdot \mathbf{d}_2 = 0$ 

Question: Can we find the angle between 2 skew lines? Yes

## Example 6

Find the acute angle between the lines, correct to the nearest  $0.1^{\circ}$ .

$$l_1: \mathbf{r} = \begin{pmatrix} 1\\4\\0 \end{pmatrix} + \lambda \begin{pmatrix} 3\\1\\-2 \end{pmatrix} \text{ and } l_2: \mathbf{r} = \begin{pmatrix} 3\\-1\\2 \end{pmatrix} + \mu \begin{pmatrix} 2\\0\\5 \end{pmatrix}, \qquad \lambda \in \mathbb{R}, \mu \in \mathbb{R}$$

3

## Solution:

Let  $\theta$  be the acute angle between  $l_1$  and  $l_2$ .

$$\cos \theta = \frac{\begin{vmatrix} 3 \\ 1 \\ -2 \end{vmatrix}}{\sqrt{14}\sqrt{29}} = \frac{|-4|}{\sqrt{14}\sqrt{29}} = \frac{4}{\sqrt{14}\sqrt{29}}$$
$$\Rightarrow \theta = \cos^{-1}\left(\frac{4}{\sqrt{14}\sqrt{29}}\right) = 78.5^{\circ}$$
For acute angle,  $\cos \theta$  is positive.

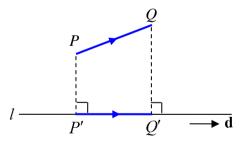
 $\begin{bmatrix} 1\\ -2 \end{bmatrix} \text{ and } \begin{bmatrix} 0\\ 5 \end{bmatrix} \text{ is given by}$  $= \cos^{-1} \frac{\begin{pmatrix} 3\\ 1\\ -2 \end{pmatrix} \bullet \begin{pmatrix} 2\\ 0\\ 5 \end{pmatrix}}{\sqrt{14}\sqrt{29}} = \cos^{-1} \left(\frac{-4}{\sqrt{14}\sqrt{29}}\right) = 101.5^{\circ}$ In short, always look out for key word like **acute angle** when finding angles between 2 lines or angles between 2 vectors.

Note: Angle between the vectors

2

## §4 <u>Projection of a Vector onto a Line</u>

Consider the vector  $\overrightarrow{PQ}$  and the line *l* with equation *l*:  $\mathbf{r} = \mathbf{a} + \lambda \mathbf{d}$ ,  $\lambda \in \mathbb{R}$ .



- The length of projection of  $\overrightarrow{PQ}$  onto  $l = P'Q' = \left|\overrightarrow{PQ'}\right| = \left|\overrightarrow{PQ}\cdot\mathbf{\hat{d}}\right|$
- The projection vector of  $\overrightarrow{PQ}$  onto  $l = \overrightarrow{P'Q'} = (\overrightarrow{PQ} \cdot \mathbf{d})\mathbf{d}$

C

C'

В

B'

## Example 7

The line *l* passes through the point *A* with position vector  $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$  and is parallel to  $\begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix}$ .

The points *B* and *C* have position vectors  $\begin{pmatrix} 1 \\ 1 \\ 7 \end{pmatrix}$  and  $\begin{pmatrix} 3 \\ 6 \\ 4 \end{pmatrix}$  respectively.

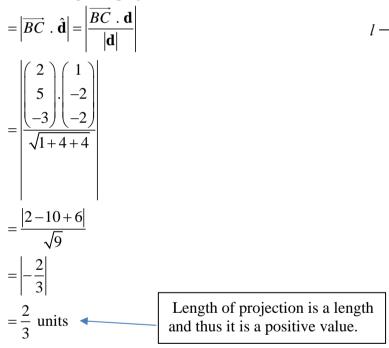
(i) Find the length of the projection of  $\overrightarrow{BC}$  onto *l*.

(ii) Hence find the projection vector of  $\overrightarrow{BC}$  onto *l*.

## Solution:

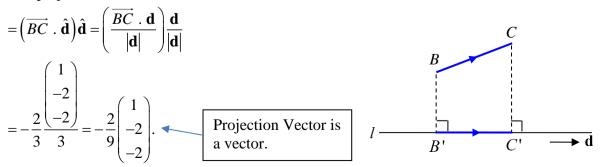
(i) Let 
$$\mathbf{d} = \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix}$$
 be the direction vector of line *l*.

So, the length of projection of  $\overrightarrow{BC}$  onto *l* is B'C'



(ii)

The projection vector of  $\overrightarrow{BC}$  onto *l* is  $\overrightarrow{B'C'}$ 



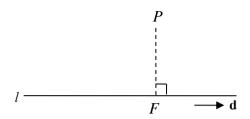
Р

F

d

## §5 <u>Between Point and Line: Foot of the Perpendicular from a Point to a Line</u>

Consider the line *l* with equation  $l : \mathbf{r} = \mathbf{a} + \lambda \mathbf{d}$ ,  $\lambda \in \mathbb{R}$ , and the point *P* (not on *l*).



How do we find the position vector of F, the foot of the perpendicular from the point P to the line l?

### Example 8

The line *l* has equation  $l: \mathbf{r} = (6\mathbf{i} + 2\mathbf{k}) + \lambda(\mathbf{i} + 2\mathbf{j}), \lambda \in \mathbb{R}$ . Find the position vector of the foot of the perpendicular from the point P(1,0,2) to *l*.

### Solution:

Let F be the foot of the perpendicular from P to l.

## Method 1

## What is the aim of the question?

To find  $\overrightarrow{OF}$ .

## What can we observe from the diagram?

 $\overrightarrow{PF} \perp l$ , so  $\overrightarrow{PF} \cdot \mathbf{d} = 0$ 

Since *F* lies on *l* then 
$$\overrightarrow{OF} = \begin{pmatrix} 6+\lambda\\2\lambda\\2 \end{pmatrix}$$
 for some  $\lambda \in \mathbb{R}$ .  
 $\overrightarrow{PF} = \overrightarrow{OF} - \overrightarrow{OP} = \begin{pmatrix} 6+\lambda\\2\lambda\\2 \end{pmatrix} - \begin{pmatrix} 1\\0\\2 \end{pmatrix} = \begin{pmatrix} 5+\lambda\\2\lambda\\0 \end{pmatrix}$   
Since  $\overrightarrow{PF} \perp l$ ,  $\overrightarrow{PF} \cdot \mathbf{d} = 0 \Rightarrow \begin{pmatrix} 5+\lambda\\2\lambda\\0 \end{pmatrix} \cdot \begin{pmatrix} 1\\2\\0 \end{pmatrix} = 0 \Rightarrow 5 + \lambda + 4\lambda = 0 \Rightarrow \lambda = -1$ 

Therefore, the position vector of the foot of the perpendicular from P to l is

$$\overrightarrow{OF} = \begin{pmatrix} 6-1\\2(-1)\\2 \end{pmatrix} = \begin{pmatrix} 5\\-2\\2 \end{pmatrix}$$



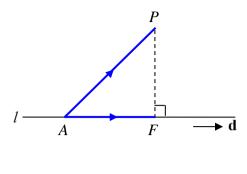
## Method 2 (similar to finding projection vector)

Let A be the point with position vector  $6\mathbf{i} + 2\mathbf{k}$ , which lies on l.

$$\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \begin{pmatrix} -5\\0\\0 \end{pmatrix}$$

 $\overrightarrow{AF}$  = projection vector of  $\overrightarrow{AP}$  onto *l* 

$$\overrightarrow{AF} = \left(\frac{\overrightarrow{AP} \cdot \mathbf{d}}{|\mathbf{d}|}\right) \frac{\mathbf{d}}{|\mathbf{d}|} = \frac{\begin{pmatrix} -5\\0\\0 \end{pmatrix} \cdot \begin{pmatrix} 1\\2\\0 \end{pmatrix}}{\sqrt{1+4+0}} \frac{\mathbf{d}}{|\mathbf{d}|} = -\sqrt{5} \frac{\begin{pmatrix} 1\\2\\0 \end{pmatrix}}{\sqrt{1+4+0}} = \begin{pmatrix} -1\\-2\\0 \end{pmatrix}$$

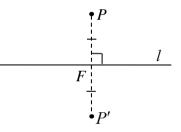


Therefore, the position vector of the foot of the perpendicular from P to l is

$$\overrightarrow{OF} = \overrightarrow{OA} + \overrightarrow{AF} = \begin{pmatrix} 6\\0\\2 \end{pmatrix} + \begin{pmatrix} -1\\-2\\0 \end{pmatrix} = \begin{pmatrix} 5\\-2\\2 \end{pmatrix}.$$

## §6 Between Point and Line: Reflection of a Point in a Line

Consider the line *l* with equation  $l : \mathbf{r} = \mathbf{a} + \lambda \mathbf{d}$ ,  $\lambda \in \mathbb{R}$ , and the point *P* (not on *l*).



How do we find the position vector of P', the reflection of P in the line l?

Note that if P' is the reflection of P in the line l, then

- (i) PP' is perpendicular to l. So F is in fact the foot of the perpendicular from P to l.
- (ii) P and P' are equidistant from F.

To find the reflection of P in l:

**Step 1:** Find the position vector of *F*, the foot of the perpendicular from *P* to *l*.

**Step 2**: Using Ratio Theorem, 
$$\overrightarrow{OF} = \frac{OP + OP'}{2} \implies \overrightarrow{OP'} = 2\overrightarrow{OF} - \overrightarrow{OP}$$
.

l

## Example 9

The equation of a straight line *l* is  $\mathbf{r} = (1+4\lambda)\mathbf{i}+3\lambda\mathbf{j}+2\mathbf{k}$ , where  $\lambda$  is a parameter. The point *P* has coordinates (2,7,-1).

(i) Find the position vector of the foot of the perpendicular from P to l.

(ii) Find the position vector of the reflection of P in the line l.

## Solution:

(i) Let F be the foot of the perpendicular from P to l.

$$l: \mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ 3 \\ 0 \end{pmatrix}, \lambda \in \mathbb{R}$$

What is the aim of the question? To find  $\overrightarrow{OF}$ .

## What can we observe from the diagram?

$$\overrightarrow{PF} \perp l \text{, so } \overrightarrow{PF} \cdot \mathbf{d} = 0$$
Foo  
the I  
Since F lies on l then  $\overrightarrow{OF} = \begin{pmatrix} 1+4\lambda \\ 3\lambda \\ 2 \end{pmatrix}$  for some  $\lambda \in \mathbb{R}$ .  

$$\overrightarrow{PF} = \overrightarrow{OF} - \overrightarrow{OP} = \begin{pmatrix} 1+4\lambda \\ 3\lambda \\ 2 \end{pmatrix} - \begin{pmatrix} 2 \\ 7 \\ -1 \end{pmatrix} = \begin{pmatrix} 4\lambda - 1 \\ 3\lambda - 7 \\ 3 \end{pmatrix}$$

$$\overrightarrow{PF} \perp l \implies \begin{pmatrix} 4\lambda - 1 \\ 3\lambda - 7 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 3 \\ 0 \end{pmatrix} = 0 \implies 16\lambda - 4 + 9\lambda - 21 = 0 \implies \lambda = 1$$

Foot of perpendicular *F* lies on the line *l*, i.e. *F* is a point on *l*.

Therefore, the position vector of the foot of the perpendicular from P to l is

$$\overrightarrow{OF} = \begin{pmatrix} 1+4(1) \\ 3(1) \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \\ 2 \end{pmatrix}.$$

(ii) Let P' be the reflection of P in the line l.

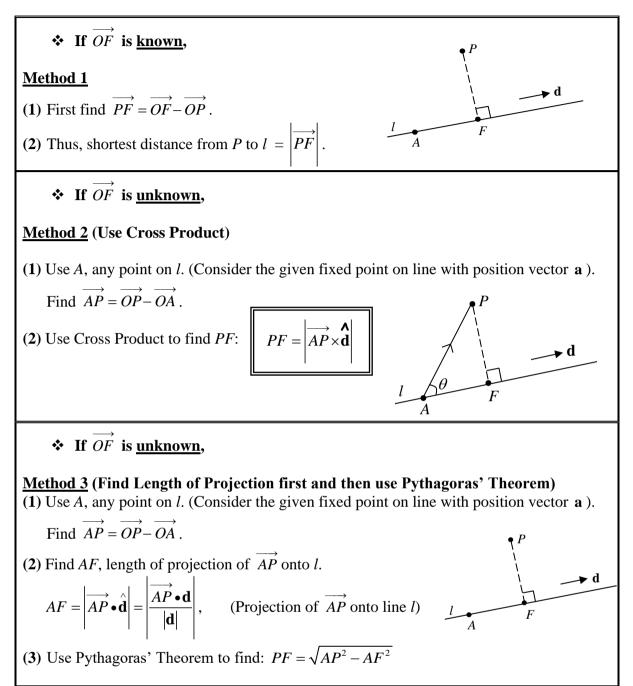
By Ratio Theorem,

$$\overrightarrow{OF} = \frac{\overrightarrow{OP} + \overrightarrow{OP'}}{2} \implies \overrightarrow{OP'} = 2\overrightarrow{OF} - \overrightarrow{OP} = 2\begin{pmatrix}5\\3\\2\end{pmatrix} - \begin{pmatrix}2\\7\\-1\end{pmatrix} = \begin{pmatrix}8\\-1\\5\end{pmatrix}$$

Therefore, the position vector of the reflection of *P* in the line *l* is  $\overrightarrow{OP'} = \left| -1 \right|$ .

5

## §7 <u>Between Point and Line: Shortest Distance / Perpendicular Distance from a Point</u> to a Line



The equation of a straight line *l* is  $\mathbf{r} = (1+4\lambda)\mathbf{i}+3\lambda\mathbf{j}+2\mathbf{k}$ , where  $\lambda$  is a parameter. The point *P* has coordinates (2,7,-1).

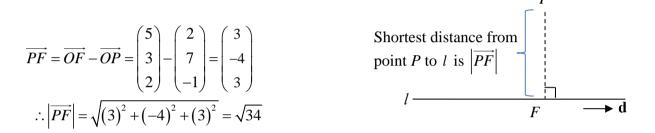
- (i) Find the position vector of the foot of the perpendicular from P to l.
- (ii) Hence or otherwise, find the shortest distance from P to l.

## Solution:

(i) From the above Example 9, we have solved part (i) where  $\lambda = 1$  and the position vector

of the foot of the perpendicular from P to l is  $\overrightarrow{OF} = \begin{pmatrix} 5\\ 3\\ 2 \end{pmatrix}$ 

(ii) Using the result from part (i), we can find the shortest distance from P to l which is  $|\overrightarrow{PF}|$ 



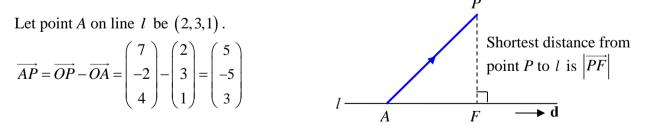
Hence, the shortest distance from P to l is  $\sqrt{34}$  units.

## Example 10

Find the perpendicular distance from P(7, -2, 4) to the line  $\mathbf{r} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}, \ \lambda \in \mathbb{R}$ .

## Solution:

We will use <u>Method 2</u> (Use Cross Product) to find the shortest distance from P to line l.



$$\begin{aligned} \left| \overrightarrow{PF} \right| &= \left| \overrightarrow{AP} \times \widehat{\mathbf{d}} \right| \\ &= \frac{\left| \overrightarrow{AP} \times \mathbf{d} \right|}{\left| \mathbf{d} \right|} \\ &= \frac{\left| \begin{pmatrix} 5 \\ -5 \\ 3 \end{pmatrix} \times \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} \right|}{\left| \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} \right|} \\ &= \frac{\left| \begin{pmatrix} 6 \\ 3 \\ -5 \end{pmatrix} \right|}{\sqrt{1^2} + (-2)^2} \\ &= \frac{\sqrt{6^2 + 3^2 + (-5)^2}}{\sqrt{5}} \\ &= \frac{\sqrt{70}}{\sqrt{5}} = \sqrt{14} \end{aligned}$$

## <u>Method 3 (Find Length of Projection first and then use Pythagoras</u>, Theorem) P

Let point A on line I be 
$$(2,3,1)$$
.  
 $\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \begin{pmatrix} 7 \\ -2 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ -5 \\ 3 \end{pmatrix}$   
Length of projection of  $\overrightarrow{AP}$  onto I is  $|\overrightarrow{AF}|$ .  
 $|\overrightarrow{AF}| = |\overrightarrow{AP} \cdot \overrightarrow{\mathbf{d}}|$   
 $= \frac{|\overrightarrow{AP} \cdot \overrightarrow{\mathbf{d}}|}{|\overrightarrow{\mathbf{d}}|} = \frac{\begin{pmatrix} 5 \\ -5 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}}{|(1-2) \\ 0 \end{pmatrix}} = \frac{15}{\sqrt{1^2 + (-2)^2}} = \frac{15}{\sqrt{5}} = 3\sqrt{5}$   
Using Pythagoras' Theorem,  
 $|\overrightarrow{PF}| = \sqrt{59 - (3\sqrt{5})^2} = \sqrt{14}$ 



## H2 Mathematics (9758) Chapter 6A 3D Vector Geometry (Lines) Discussion Questions

## Level 1

- 1 Find a <u>vector equation</u>, a <u>cartesian equation</u> and a set of <u>parametric equations</u> of the following lines:
  - (a) passing through the point with position vector  $7\mathbf{i}+2\mathbf{j}-4\mathbf{k}$  and parallel to  $\mathbf{i}-3\mathbf{j}+\mathbf{k}$ ,
  - (b) passing through the points (1, -2, 1) and (0, 4, 9),
  - (c) passing through the point (3,0,2) and parallel to the line  $x = \frac{y+4}{3}, z = 1$ .
- 2 For the following pairs of lines, determine whether they are parallel lines, intersecting lines or skew lines. Find the coordinates of the point of intersection for intersecting lines.
  - (a)  $\frac{x-1}{3} = \frac{y-1}{-2} = z-1$ ,  $\mathbf{r} = -2\mathbf{i} + 3\mathbf{j} + \alpha(2\mathbf{i} + 3\mathbf{j} \mathbf{k})$  where  $\alpha$  is a real parameter.
  - (b)  $\mathbf{r} = -2\mathbf{i} + 3\mathbf{j} + \lambda(2\mathbf{i} + 3\mathbf{j} \mathbf{k}), \ \mathbf{r} = (-1 6\mu)\mathbf{i} + (3 9\mu)\mathbf{j} + (3\mu)\mathbf{k}$ , where  $\lambda$  and  $\mu$  are real parameters.

3 The lines 
$$l_1$$
 and  $l_2$  have equations  $\mathbf{r} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$  and  $\mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$  respectively,

where *s* and *t* are real parameters.

- (i) Show that  $l_1$  passes through the point A(2, -1, -4), but that  $l_2$  does not.
- (ii) Find the acute angle between  $l_2$  and the line joining A(2, -1, -4) and B(1, -1, 1).

4 Given that point *A* has position vector 
$$\begin{pmatrix} 2\\0\\1 \end{pmatrix}$$
 and point *B* has position vector  $\begin{pmatrix} 1\\0\\2 \end{pmatrix}$ , find the

- (i) length of the projection of  $\overrightarrow{AB}$  onto the z-axis,
- (ii) projection vector of  $\overrightarrow{AB}$  onto the *z*-axis.
- 5 Find the coordinates of the foot of perpendicular from the point P(7, -2, 4) to the line  $r = (2 + \lambda)i + (3 2\lambda)j + k$ , where  $\lambda$  is a real parameter.

## Level 2

6 The equation of a straight line *l* is  $\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$ , where *t* is a parameter.

The point A on l is given by t = 0, and the origin of the position vectors is O.

- (a) Calculate the acute angle between *OA* and *l*, giving your answer correct to the nearest degree.
- (b) Find the position vector of the point P on l such that OP is perpendicular to l.
- (c) A point Q on l is such that the length of OQ is 5 units. Find the two possible position vectors of Q.
- (d) The points *R* and *S* on *l* are given by  $t = \lambda$  and  $t = 2\lambda$  respectively. Show that there is no value of  $\lambda$  for which *OR* and *OS* are perpendicular.

## 7 N2015/I/7

Referred to the origin *O*, points *A* and *B* have position vectors **a** and **b** respectively. Point *C* lies on *OA*, between *O* and *A*, such that OC: CA = 3:2. Point *D* lies on *OB*, between *O* and *B*, such that OD: DB = 5:6.

- (i) Find the position vectors  $\overrightarrow{OC}$  and  $\overrightarrow{OD}$ , giving your answers in terms of **a** and **b**. [2]
- (ii) Show that the vector equation of the line *BC* can be written as  $\mathbf{r} = \frac{3}{5}\lambda \mathbf{a} + (1-\lambda)\mathbf{b}$ ,

where  $\lambda$  is a parameter. Find in a similar form the vector equation of the line *AD* in terms of a parameter  $\mu$ . [3]

(iii) Find, in terms of **a** and **b**, the position vector of the point *E* where the lines *BC* and *AD* meet and find the ratio AE : ED. [5]

## Level 3

8 Relative to the origin O, the point A has coordinates (4, 4, 7) and the line l has equation

 $r = -i + j + 2k + \lambda(6i + j + k)$ . Find the position vector of

- (i) the foot of perpendicular from A to l,
- (ii) the point A', the reflection of A in the line l.

Hence or otherwise, find the shortest distance from A to line l.

## 9 2012/I/9 (modified)

- (i) Find a vector equation of the line through the points A and B with position vectors  $7\mathbf{i}+8\mathbf{j}+9\mathbf{k}$  and  $-\mathbf{i}-8\mathbf{j}+\mathbf{k}$  respectively. [3]
- (ii) The perpendicular to this line from the point *C* with position vector  $\mathbf{i} + 8\mathbf{j} + 3\mathbf{k}$  meets the line at the point *N*. Find the position vector of *N* and the ratio AN : NB.
- (iii) Find a Cartesian equation of the line which is a reflection of the line *AC* in the line *AB*. [4]
- (iv) The point *D* has position vector  $\mathbf{i} + 8\mathbf{j} 2\mathbf{k}$ . Find the length of projection of  $\overline{CD}$  onto line *AB*. [4]

## 10 2017(9758)/I/10

Electrical engineers are installing electricity cables on a building site. Points (x, y, z) are defined relative to a main switching site at (0,0,0), where units are metres. Cables are laid in straight lines and the widths of cables can be neglected.

An existing cable C starts at the main switching site and goes in the direction  $\begin{pmatrix} 3\\1\\-2 \end{pmatrix}$ .

A new cable is installed which passes through points P(1,2,-1) and Q(5,7,a).

(i) Find the value of a for which C and the new cable will meet. [4]

To ensure that the cables do not meet, the engineers use a = -3. The engineers wish to connect each of the points P and Q to a point R on C.

- (ii) The engineers wish to reduce the length of cable required and believe in order to do this that angle PRQ should be 90°. Show that this is not possible. [4]
- (iii) The engineers discover that the ground between P and R is difficult to drill through and now decide to make the length of PR as small as possible. Find the coordinates of R in this case and the exact minimum length. [5]

# Extend: How can we find the exact minimum length without first finding the coordinates of R?

## 11 9758 Specimen Paper/I/6

- (a) The non-zero vectors **a**, **b** and **c** are such that  $\mathbf{a} \times \mathbf{b} = \mathbf{c} \times \mathbf{a}$ . Given that  $\mathbf{b} \neq -\mathbf{c}$ , find a linear relationship between **a**, **b** and **c**. [3]
- (b) The variable vector **v** satisfies the equation  $\mathbf{v} \times (\mathbf{i} 3\mathbf{k}) = 2\mathbf{j}$ . Find the set of vectors **v** and fully describe this set geometrically. [5]

[5]

| Answer Key                                                                                                                                                                                                                                                                                                                        |                                                                                                                                      |                                               |                                              |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------|--|--|--|
| Q1                                                                                                                                                                                                                                                                                                                                | Vector Equation                                                                                                                      | Cartesian Equation                            | Parametric                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                      |                                               | Equation                                     |  |  |  |
| (a)                                                                                                                                                                                                                                                                                                                               | (7) $(1)$                                                                                                                            |                                               | $x = 7 + \lambda$                            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                   | $l_1: \mathbf{r} = \begin{bmatrix} 2\\ -4 \end{bmatrix} + \lambda \begin{bmatrix} -3\\ 1 \end{bmatrix}, \lambda \in \mathbb{R}$      | $x - 7 = \frac{y - 2}{-3} = z + 4$            | $y = 2 - 3\lambda$                           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                      | OR                                            | $z = -4 + \lambda, \ \lambda \in \mathbb{R}$ |  |  |  |
|                                                                                                                                                                                                                                                                                                                                   | $l_1: \mathbf{r} = \begin{pmatrix} 7\\2\\-4 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-3\\1 \end{pmatrix}, \lambda \in \mathbb{R}$  | $x - 7 = \frac{2 - y}{3} = z + 4$             |                                              |  |  |  |
| (b)                                                                                                                                                                                                                                                                                                                               |                                                                                                                                      |                                               |                                              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                   | $l_2: \mathbf{r} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -6 \\ -8 \end{pmatrix}, \mu \in \mathbb{R}$ | $x - 1 = \frac{y + 2}{-6} = \frac{z - 1}{-8}$ | $y = -2 - 6\mu$                              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                      | OR                                            | $z=1-8\mu$ , $\mu\in\mathbb{R}$              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                      | $x - 1 = -\frac{y + 2}{6} = \frac{1 - z}{8}$  |                                              |  |  |  |
| (c)                                                                                                                                                                                                                                                                                                                               | $\begin{pmatrix} 3 \\ 2 \end{pmatrix} + x \begin{pmatrix} 1 \\ 2 \end{pmatrix}$                                                      | $x-3=\frac{y}{2}, z=2$                        | $x = 3 + \gamma$                             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                   | $l_{5}: \mathbf{r} = \begin{pmatrix} 3\\0\\2 \end{pmatrix} + \gamma \begin{pmatrix} 1\\3\\0 \end{pmatrix}, \gamma \in \mathbb{R}$    | 3                                             | $y = 3\gamma$                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                      |                                               | $z=2, \ \gamma \in \mathbb{R}$               |  |  |  |
| . 2                                                                                                                                                                                                                                                                                                                               | ntersecting lines and the co                                                                                                         | pordinates of their point                     | nt of intersection are                       |  |  |  |
| (-2,3,0).                                                                                                                                                                                                                                                                                                                         |                                                                                                                                      |                                               |                                              |  |  |  |
| <b>2(b)</b> $l_3$ and $l_4$ are di                                                                                                                                                                                                                                                                                                | stinct parallel lines.                                                                                                               |                                               |                                              |  |  |  |
| <b>3(ii)</b> 55.9°                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                               |                                              |  |  |  |
| <b>4(i)</b> 1, (ii) $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ <b>5</b> (5, -3, 1)                                                                                                                                                                                                                                               |                                                                                                                                      |                                               |                                              |  |  |  |
| <b>6(a)</b> 52° <b>(b)</b> $\frac{1}{3} \begin{pmatrix} 7\\2\\5 \end{pmatrix}$ <b>(c)</b> $\overrightarrow{OQ} = \frac{1}{3} \begin{pmatrix} 14\\-5\\-2 \end{pmatrix}$ or $\overrightarrow{OQ} = \begin{pmatrix} 0\\3\\4 \end{pmatrix}$                                                                                           |                                                                                                                                      |                                               |                                              |  |  |  |
| 7(i) $\overrightarrow{OC} = \frac{3}{5}\mathbf{a}, \overrightarrow{OD} = \frac{5}{11}\mathbf{b}$ (ii) $\mathbf{r} = \frac{5}{11}\mu\mathbf{b} + (1-\mu)\mathbf{a}, \ \mu \in \mathbb{R}$ (iii) $\overrightarrow{OE} = \frac{9}{20}\mathbf{a} + \frac{1}{4}\mathbf{b}, 11:9$                                                       |                                                                                                                                      |                                               |                                              |  |  |  |
| $\mathbf{8(i)} \begin{pmatrix} 5\\2\\3 \end{pmatrix}, (\mathbf{ii}) \begin{pmatrix} 6\\0\\-1 \end{pmatrix}; \sqrt{21}$                                                                                                                                                                                                            |                                                                                                                                      |                                               |                                              |  |  |  |
| $9(\mathbf{i}) \ \mathbf{r} = \begin{pmatrix} 7\\8\\9 \end{pmatrix} + \lambda \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \ \lambda \in \mathbb{R}  (\mathbf{i}\mathbf{i}) \begin{pmatrix} 5\\4\\7 \end{pmatrix}, \ 1:3  (\mathbf{i}\mathbf{i}\mathbf{i}) \ x-7 = \frac{y-8}{-4} = z-9 \ (\mathbf{i}\mathbf{v}) \ \frac{5\sqrt{6}}{6}$ |                                                                                                                                      |                                               |                                              |  |  |  |
| <b>10(i)</b> $a = -\frac{22}{5}$ <b>(iii)</b> $\left(\frac{3}{2}, \frac{1}{2}, -1\right), \frac{\sqrt{10}}{2}$                                                                                                                                                                                                                    |                                                                                                                                      |                                               |                                              |  |  |  |