A Tiny Taste of Machine Learning



The plan ahead

* Machine learning is a huge topic — with many tertiary modules
dedicated to it

* natural language processing, computational biology, computer vision,
robotics, other areas

* |n this class, we will

* provide an introduction to the basic ideas, including ways to measure
distances between examples, and how to group examples based on distance
to create models

* introduce classification methods, such as “k nearest neighbor” methods
* introduce clustering methods, such as “k-means”



What is Machine Learning

* Many useful programs learn something
* In last few lessons, we used linear regression to learn models of data

* “Field of study that gives computers the ability to learn without being
explicitly programmed.” Arthur Samuel

 Computer pioneer who wrote first self-learning program, which played
checkers — learned from “experience”

* invented alpha-beta pruning — widely used in decision tree searching



What Is Machine Learning?

"Modern statistics meets optimization
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How Are Things Learned?

*Memorization

> Accumulation of individual facts
° Limited by

> Time to observe facts

‘ Declarative knowledge

> Memory to store facts

*GGeneralization

> Deduce new facts from old facts | Imperative knowledge

° Limited by accuracy of deduction process
> Essentially a predictive activity
> Assumes that the past predicts the future

"Interested in extending to programs that can infer
useful information from implicit patterns in data



Basic Paradigm

"Observe set of examples: training data

"|Infer something about process that generated that
data

=Use inference to make predictions about previously
unseen data: test data



Basic Paradigm

Spatial deviations relative to
mass displacements of spring

=*Observe set of examples: training data

*"Infer something about process that generated that

data Fit polynomial curve using
linear regression

=Use inference to make predictions about previously

unseen data: test data Predict displacements for

other weights




Basic Paradigm

*Observe set of examples: training data

Football players, labeled by
position, with height and
weight data

*"Infer something about process that generated that

data

Find canonical model of
position, by statistics

=Use inference to make predictions about previously

unseen data: test data

=\ariations on paradigm

Predict position of new
players

> Supervised: given a set of feature/label pairs, find a rule
that predicts the label associated with a previously

unseen input

o Unsupervised: given a set of feature vectors (without
labels) group them into “natural clusters” (or create

labels for groups)



All ML Methods Require:

* Choosing training data and evaluation method
* representation of the features

* distance metric for feature vectors

 objective function and constraints

* optimization method for learning the model



Supervised Learning

=Start with set of feature vector/value pairs

"Goal: find a model that predicts a value for a
previously unseen feature vector

"Regression models predict a real
> As with linear regression

5Classification models predict a label (chosen from a
finite set of labels)



Unsupervised Learning

=Start with a set of feature vectors

®"Goal: uncover some latent structure in the set of
feature vectors

5Clustering the most common technique

> Define some metric that captures how similar one feature
vector is to another

> Group examples based on this metric



Some Unlabeled 2D Data
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Some Unlabeled 2D Data
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Suppose Data Is Labeled
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Some Examples of Classitying and Clustering

* Here are some data on some Athletes from Track and Fields
* Name, Height, Weight
e Labeled by type of Events

* Sprinters

Edelman = [‘Edelman’,70,200]
Hogan = [‘Hogan’,73,210]
gronkowski = [‘gronkowski’,78,265]
amendola = [‘amednola’,71,190]
bennett = [‘bennett’,78,275]

e Javelin Thrower

e cannon = [‘cannon’,77,335]
e solder = [‘solder’,80,325]
 mason = [‘mason’,73,310]

thuney = [‘thuney’,77,305]
karras = [‘karras’,76,305]



Unlabeled Data
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Clustering examples into groups

*"\Want to decide on “similarity” of examples, with goal
of separating into distinct, “natural”, groups

o Similarity is a distance measure

sSuppose we know that there are k different groups in
our training data, but don’t know labels (here k = 2)

° Pick k samples (at random?) as exemplars

° Cluster remaining samples by minimizing distance
between samples in same cluster (objective function) —
out sample in group with closest exemplar

> Find median example in each cluster as new exemplar

> Repeat until no change



Similarity Based on Weight
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Similarity Based on Height

Weight
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Cluster into Two Groups Using Both Attributes

Distribution of height vs. weight
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Suppose Data Was Labeled
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Finding Classifier Surfaces

*Given labeled groups in feature space, want to find
subsurface in that space that separates the groups

> Subject to constraints on complexity of subsurface

"In this example, have 2D space, so find line (or
connected set of line segments) that best separates the
two groups

*When examples well separated, this is straightforward

*When examples in labeled groups overlap, may have
to trade off false positives and false negatives



Suppose Data Was Labeled
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Adding Some New Data

e Suppose we have learned to separate Sprinters and Javelin Throwers

* Now we are given some long jumpers, and want to use model to
decide if they are more like Sprinters or Javelin Throwers
* blount = [‘blount’,72,250]
* white = [‘white’,70,205]



Adding Some New Data
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Clustering using Unlabeled Data
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Classified using Labeled Data

Weight
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Machine Learning Methods

*We will see some examples of machine learning
methods:

*Learn models based on unlabeled data, by clustering
training data into groups of nearby points

> Resulting clusters can assign labels to new data

*Learn models that separate labeled groups of similar
data from other groups

> May not be possible to perfectly separate groups,
without “over fitting”

> But can make decisions with respect to trading off “false
positives” versus “false negatives”

> Resulting classifiers can assign labels to new data



Choosing Features

* Features never fully describe the situation
e “All models are wrong, but some are useful.” — George Box

* Feature engineering
* Represent examples by feature vectors that will facilitate generalization

* Suppose | want to use 100 examples from past to predict at the start of the
year, which students will pass the final exam

* Some features surely helpful, e.g., their grade on the mid year exam, did they
do problem sets, etc.

* others might cause me to overfit, e.g., birth month, eye colour

* want to maximize ratio of useful input to irrelevant input
 Signal-to-Noise Ratio (SNR)



An Example

Features Label
Egg-laying Poisonous | Cold- # legs Reptile
blooded
Cobra True True True True

Initial model:
* Not enough information to generalize



An Example

Features Label
Egg-laying Poisonous | Cold- # legs Reptile
blooded
Cobra True True True True
Rattlesnake True True True True 0 Yes
Initial model:
« Egglaying

« Has scales

* |s poisonous
 (Cold blooded
* No legs



An Example

Features Label
m Egg-laying Scales | Poisonous
Cobra True True True True 0 Yes
Rattlesnake True True True True 0 Yes
Boa False True False True 0 Yes
constrictor

Current model:

* Has scales
« Cold blooded Boa doesn’t fit model, but is labeled as

reptile.
Need to refine model

* No legs




An Example

Features Label
Egg-laying Scales | Poisonous | Cold-
blooded

Cobra True True True True 0 Yes
Rattlesnake True True True True 0 Yes
Boa False True False True 0 Yes
constrictor

Chicken True True False False 2 No

Current model:
* Has scales

* Cold blooded
* Nolegs



An Example

Features Label
m Egg-laying Scales | Poisonous

Cobra True True True True 0 Yes
Rattlesnake True True True True 0 Yes
Boa False True False True 0 Yes
constrictor

Chicken True True False False 2 No
Alligator True True False True 4 Yes

Current model:
* Has scales Alligator doesn’t fit model, but is
* Cold blooded labeled as reptile.

* HasOor4legs Need to refine model




An Example

Features Label
m Egg-laying Poisonous

Cobra True True True True 0 Yes
Rattlesnake True True True True 0 Yes
Boa False True False True 0 Yes
constrictor

Chicken True True False False 2 No
Alligator True True False True 4 Yes
Dart frog True False True False 4 No

Current model:

* Has scales

* Cold blooded
* HasO0or4legs



An Example

Features Label
m Egg-laying Scales | Poisonous | Cold-
blooded

Cobra True True True True 0 Yes
Rattlesnake  True True True True 0 Yes
Boa False True False True 0 Yes
constrictor

Chicken True True False False 2 No
Alligator True True False True 4 Yes
Dart frog True False True False 4 No
Salmon True True False True 0 No
Python True True False True 0 Yes

Current model:

No (easy) way to add to rule that will correctly classify
* Has scales

salmon and python (since identical feature values)

* Cold blooded
* HasOor4legs



An Example

Features Label
m Egg-laying Scales | Poisonous | Cold-
blooded

Cobra True True True True 0 Yes
Rattlesnake True True True True 0 Yes
Boa False True False True 0 Yes
constrictor

Chicken True True False False 2 No
Alligator True True False True 4 Yes
Dart frog True False True False 4 No
Python True True False True 0 Yes
Good model:

Not perfect, but no false negatives (anything classified
as not reptile is correctly labeled); some false positives
(may incorrectly label some animals as reptile)

* Has scales
* (Cold blooded




Need to Measure Distances between Features

"Feature engineering:

> Deciding which features to include and which are merely
adding noise to classifier

> Defining how to measure distances between training
examples (and ultimately between classifiers and new
instances)

> Deciding how to weight relative importance of different
dimensions of feature vector, which impacts definitionof
distance



Measuring Distance Between Animals

*We can think of our animal examples as consisting of
four binary features and one integer feature

*One way to learn to separate reptiles from non-
reptiles is to measure the distance between pairs of
examples, and use that:

> To cluster nearby examples into a common class
(unlabeled data), or

> To find a classifier surface in space of examples that
optimally separates different (labeled) collections of
examples from other collections

rattlesnake = [1,1,1,1,0]
boa constrictor = [0,1,0,1,0] |. ;
dart Frog = [1,0,1,0,4] Into Teature vectors

Can convert examples




Minkowski Metric

len

dist(X1,X2,p) = (Y abs(X1, - X2,))""
k=1

p=1:
p=2:

*

Manhattan Distance
Euclidean Distance

Need to measure
distances between

feature vectors

Typically use Euclidean
metric; Manhattan may
be appropriate if O
different dimensions
are not comparable

Is circle closer to star or
Cross?

* Euclidean distance
* Cross—2.8
e Star—3
* Manhattan Distance
* Cross—4
e Star-3




Manhattan (1902)
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def minkowskiDist (vl, v2, p):
""M"Assumes vl and vZ are equal-length arrays of numbers
Returns Minkowskil distance of order p between vl and v2"""

dist = 0.0
for 1 1n range(len(vl)):
dist += abs(vl[i] - v2[1])**p

return dist**(1.0/p)



class Animal (object) :
def init (self, name, features):
"""Assumes name a string; features a list of numbers
self.name = name
self.features = pylab.array (features)

mrmn

del getName (self) :
return self.name

def getFeatures(self):
return self.features

def distance(self, other):
"""Assumes other an Animal
Returns the Euclidean distance between feature vectors
of self and other"""
return minkowskiDist (self.getFeatures(),
other.getFeatures (), 2)



Euclidean Distance Between Animals

rattlesnake = [1,1,1,1,0]
boa constrictor = [0,1,0,1,0]
dartFrog = [1,0,1,0,4]




Euclidean Distance Between Animals

rattlesnake = [1,1,1,1,0]
boa constrictor = [0,1,0,1,0]

dartFrog = [1,0,1,0,4]

rattlesnake boa dart frog
constrictor
rattlesnake - 1.414 4.243
boa
constrictor 1.414 - 4.472
| dart frog 4.243 4.472 :

Using Euclidean distance, rattlesnake and boa constrictor
are much closer to each other, than they are to the dart

frog




Add an Alligator

*alligator = Animal('alligator', [1,1,0,1,4])
=animals.append(alligator)
=compareAnimals(animals, 3)




Add an Alligator

=alligator = Animal('alligator', [1,1,0,1,4])
=animals.append(alligator)
=compareAnimals(animals, 3)

rattlesnake dartfrog | alligator
rattlesnake 4.243 4123
ba | 413
|_constrictor —
dart frog 4.243 4.472 -
alligator 4123 4.123 -

Alligator is closer to dart frog than to snakes — why?

* Alligator differs from frog in 3 features, from boa in only 2 features
But scale on “legs” is from O to 4, on other featuresisOto 1
“legs” dimension is disproportionately large




Using Binary Features

rattlesnake = [1,1,1,1,0]

boa constrictor = [0,1,0,1,0]
dartFrog = [1,0,1,0,1]
Alligator = [1,1,0,1,1]

boa

: dart fro alligator
constrictor g 2

rattlesnake

rattlesnake - 1.732 /

boa
constrictor 2.236

dart frog 1.732 2.236 - 1.732

alligator 414 1414 1.732 -

Now alligator is closer to snakes than it is to dart frog
— makes more sense

Feature Engineering Matters




Producing the Distance Matrix

columnLabels = []
for a 1n animals:
columnLabels.append(a.getName())
rowLabels = columnLabels|[:]
tableVals = []
#Get distances between pairs of animals
#For each row
for al 1n animals:
row = []
#For each column
for a2 1n animals:
1T al == a2:
row.append('--")
else:
distance = al.distance(a?2)

row.append(str(round(distance, precision)))
tableVals.append(row)



Producing the Table

#Produce table

table = pylab.table(rowLabels = rowlLabels,
colLabels = columnlLabels,
cellText = tableVals,
cellLoc = 'center',
loc = 'center',
colWidths = [0.138]*1en(animals))

table.auto_set_font_size(False)

table.set_fontsi1ze(10)

table.scale(1, 2.5)

pylab.axis('off")

pylab.savefig('distances')



Supervised versus Unsupervised Learning

*When given unlabeled data, try to find clusters of
examples near each other

o Use centroids of clusters as definition of each learned class
 New data assigned to closest cluster

*When given labeled data, learn mathematical surface that
“best” separates labeled examples, subject to constraints
on complexity of surface (don’t over fit)

> New data assigned to class based on portion of feature space
carved out by classifier surface in which it lies



Issues of Concern When Learning Models

Learned models will depend on:
*Distance metric between examples
"Choice of feature vectors

"Constraints on complexity of model
> Specified number of clusters

> Complexity of separating surface

> Want to avoid over fitting problem (each example is its
own cluster, or a complex separating surface)



Clustering approaches

sSuppose we know that there are k different groups in
our training data, but don’t know labels

> Pick k samples (at random?) as exemplars

° Cluster remaining samples by minimizing distance

between samples in same cluster (objective function) —
put sample in group with closest exemplar

> Find median example in each cluster as new exemplar
> Repeat until no change

"|ssues:
> How do we decide on the best number of clusters?

> How do we select the best features, the best distance
metric?



Clustering using Unlabeled Data
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Fitting Three Clusters Unsupervised

Weight
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Classification approaches

*Want to find boundaries in feature space that separate
different classes of labeled examples

> Look for simple surface (e.g. best line or plane) that
separates classes

> Look for more complex surfaces (subject to constraints)
that separate classes

> Use voting schemes
> Find k nearest training examples, use majority vote to select label

"|ssues:
- How do we avoid over-fitting to data?
° How do we measure performance?
> How do we select best features?



Classification

="Attempt to minimize error on training data
o Similar to fitting a curve to data

=Evaluate on training data

Voter preference,
by age and
distance from
Boston
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Randomly Divide Data into Training and Test Set

Voter Preference
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Two Possible Models for a Training Set

Voter Preference
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Confusion Matrices (Training Error)
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Training Accuracy of Models

true positive + true negative

accuracy =
4 true positive + true negative + false positive + false negative

=0.7 for both models
> Which is better?

*Can we find a model with less training error?



A More Complex Model

Voter Preference
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Applying Model to Test Data

Voter Preference
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Other Statistical Measures

true positive

positive predictive value =

=*Solid line model: .57
*Dashed line model: .58
*Complex model, training: .71

"Complex model, testing: .78

*You will also see “sensitivity” versus “specificity”
o true positive
sensitivity = — -
true positive + false negative
o true negative
specificity =

true negative + false positive

true positive + false positive

Percentage
correctly
found

Percentage
correctly
rejected




Summary

*Machine learning methods provide a way of building
models of processes from data sets

> Supervised learning uses labeled data, and creates
classifiers that optimally separate data into known classes

> Unsupervised learning tries to infer latent variables by
clustering training examples into nearby groups

*Choice of features influences results

*Choice of distance measurement between examples
influences results

*We will see some examples of clustering methods,
such as k-means

*We will see some examples of classifiers, such as k
nearest neighbor methods



To Do.

* Assighnment 11
* Assignment — Assessing the Model

e Articles to read:

* https://developers.google.com/machine-learning/data-
prep/transform/normalization

* https://keytodatascience.com/confusion-matrix/

* https://blogs.oracle.com/ai-and-datascience/post/a-simple-guide-to-building-
a-confusion-matrix

e before you leave the lab, decide on FSR or FE
* Quiz 4 (24t May 2022)
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