
Hwa Chong Institution H2 Computing

1

10 Data Structures

Learning Outcome

10.1 Overview of Collections
Collection is a group of items that we want to treat as conceptual unit. Collections can be

homogeneous when all items in the collection must be of the same type, or heterogeneous when

items can be of different types. For example, lists are heterogeneous in Python.

10.1.1 Linear Collections

Ordered by position

Examples: Grocery lists, Stacks of dinner plates, A line of customers waiting at a bank

10.1.2 Hierarchical Collections

Structure reminiscent of an upside-down tree

D3’s parent is D1; its children are D4, D5, and D6

Examples: a file directory system, a company’s organizational tree, a book’s table of contents

Data Structures

Understand the concept of static allocation of memory

Understand the concept of dynamic allocation of memory

Create, insert, and delete operations for stack and queue (linear and circular)

Understand the concept of free space list (which could be another linked list or an array).

Create, update (edit, insert, delete) and search operations for a linear linked list.

Exclude: doubly-linked list and circular linked list

Create, update (edit, insert, delete*) and search operations for a binary search tree.

Exclude: deletion of nodes from binary search tree

Understand pre-order, in-order and post-order tree traversals; and application of in-order

tree traversal for binary search tree.

Programming Elements and Constructs

Understand the use of stacks in recursive programming

Implementing Algorithms and Data Structures

Write programs to implement operations for stacks, queues (linear and circular), linear

linked lists and binary search trees.

Exclude: doubly-linked list and circular linked list

Hwa Chong Institution H2 Computing

2

10.1.3 Graph Collections

Each data item can have many predecessors and many successors

D3’s neighbors are its predecessors and successors

Examples: Maps of airline routes between cities; electrical wiring diagrams for buildings

10.1.4 Unordered Collections

Items are not in any particular order. One cannot meaningfully speak of an item’s predecessor

or successor

Example: Bag of marbles

10.1.5 Operations on Collections

● Traversal: This operation visits each item in a collection

● Search and retrieval: Search for a given target item or an item at a given position

● Insertion: Adds an item to a collection at a given position

● Removal: Deletes a given item or the item at a given position

● Determine the size: Determines the size of a collection – the number of items it contains

10.1.6 Abstraction and Abstract Data Types

● To a user, a collection is an abstraction

● In Computer Science, collections are abstract data types (ADTs)

- ADT users are concerned with learning its interface

- Developers are concerned with implementing their behavior in the most efficient

manner possible

“Data structure” and “concrete data type” refer to the internal representation of an ADT’s

data. The two data structures most often used to implement collections in most programming

languages are arrays and linked structures which uses static and dynamic approaches in

storing and accessing data in the computer’s memory respectively.

Hwa Chong Institution H2 Computing

3

10.2 Array
Array is the underlying data structure of a Python list, but it is more restrictive than Python

lists. We have learnt and practiced enough for lists, but here let’s have a recap on the concepts

of array, and compare with linked structures.

10.2.1 Data Structure

An array represents a sequence of items of the same data type (homogeneous). Items can be

accessed, retrieved, stored or replaced at given index positions.

Random Access and Contiguous Memory

Array indexing is a random access operation

Address of an item: base address + offset. Index operation has two steps:

1. Fetch the base address of the array’s memory block

2. Return the result of adding the (index * k) to this address, where k is the number of memory

cells required by an array item.

Static Memory

Arrays are static. The capacity or length of the array is determined at compile time, so need to

specify the size with a constant.

Physical Size and Logical Size

- The physical size of an array is its total number of array cells

- The logical size of an array is the number of items currently in it

- To avoid reading garbage, must track both sizes

In general, the logical and physical size tell us important things about the state of the array:

- If the logical size is 0, the array is empty

- Otherwise, at any given time, the index of the last item in the array is the logical size minus

1.

- If the logical size equals the physical size, there is no more room for data in the array

Hwa Chong Institution H2 Computing

4

10.2.2 Operations on Arrays

Indexing is the key tool in traversal, search and retrieval in an array. We now discuss the

implementation of insertion and removal on arrays. In our examples, we assume the following

data settings:

The array, A, has an initial logical size of 0 and a default physical size, or capacity, of 5.

Inserting an Item into an Array

● Check for available space before attempting an insertion

● Shift items from logical end of array to target index position down by one

- To open hole for new item at target index

● Assign new item to target index position

● Increment logical size by one

Example: Insert item D5 at position 1 in an array of four items

Here is the pseudo-code for the insertion operation:

check for available space
IF (logicalSize = physicalSize):
 OUTPUT “ No room for insertion !!”
ELSE
 # shift items down by one position

 FOR index ← logicalSize-1 TO targetIndex STEP -1

 A[index+1] ← A[index]

ENDFOR

add new item and increment logical size

A[targetIndex] ← newItem

logicalSize ← logicalSize + 1

ENDIF

Hwa Chong Institution H2 Computing

5

Removing an Item from an Array

● Shift items from next target index position to the logical end of the array up by one

- To close hole left by removed item at target index

● Decrement logical size by one

Example: Removal of an item at position 1 in an array of five items

Here is the pseudo-code for the removal operation:

shift items up by one position

FOR index ← targetIndex+1 TO logicalSize-1

A[index-1] ← A[index]

ENDFOR

decrement logical size

logicalSize ← logicalSize - 1

10.3 Linked Structure

After arrays, linked structures are probably the most commonly used data structures in

programs. Like an array, a linked structure is a concrete data type that is used to implement

many types of collections, including lists.

A linked structure decouples logical sequence of items in the structure from any ordering in

memory, i.e. Noncontiguous/dynamic memory representation scheme.

For your reference, though not in the syllabus, linked structures can be doubly linked,

or circular linked.

Hwa Chong Institution H2 Computing

6

10.3.1 Node

The basic unit of representation in a linked structure is a node. A singly linked node contains

a data item and a link to the next node.

You can set up nodes to use noncontiguous memory in several ways:

● Using pointers (a null or nil represents the empty link as a pointer value): Memory

allocated from the object heap

● Using references to objects (e.g., Python)

- In Python, None can mean an empty link

- Automatic garbage collection frees programmer from managing the object heap

● Using two parallel arrays

Defining a Node Class

● Node classes are fairly simple

● Flexibility and ease of use are critical

● Node instance variables are usually referenced without method calls, and constructors

allow the user to set a node’s link(s) when the node is created

A node contains just a data item and a reference to the next node:

"""

File: node.py

Node class for one-way linked structures

"""

class Node:

 def __init__ (self, data, next = None):

 # Instantiates a Node with default next of None

 self.data = data

 self.next = next

Hwa Chong Institution H2 Computing

7

Using the Node Class

Node variables are initialized to None or a new Node object

To place the first node at the beginning of the linked structure that already contains node2

and node3:

 node1.next = node3 raises AttributeError

Solution:

 node1 = Node ("C", node3),

or

 node1 = Node ("C", None)

 node1.next = node3

To guard against exceptions:

 if nodeVariable != None:

 <access a field in nodeVariable>

Like arrays, linked structures are processed with loops.

from node import Node

head = None

Add five nodes to the beginning of the linked structure

for count in range (1, 6):

 head = Node (count, head)

Print the contents of the structure

probe = head # initialize temporary pointer variable

while probe != None:

 print (probe.data)

 probe = probe.next

When the data are displayed, do they appear in the same order of their insertion?

Hwa Chong Institution H2 Computing

8

10.3.2 Operations on Linked Structures

Indexes are an integral part of the array structure, hence almost all of the operations on arrays

are index based. We shall emulate index-based operations on a linked structure by manipulating

links within the structure.

The traversal and searching operations are similar since both must traverse from the ‘start’ of

the structure. The difference is whether to use index or link. The retrieval operation is

straightforward for an array but more complicated for a linked structure since traversal is

required. Similarly for insertion and removal of a particular item. However, no shifting of items

will be required for a linked structure to perform insertion or removal.

We shall explore the implementation of these operations for various scenarios.

Traversal

In order to visit each node without deleting it, we can use a temporary pointer variable

probe = head

while probe != None:

 <use or modify probe.data>

 probe = probe.next

None serves as a sentinel that stops the process

Hwa Chong Institution H2 Computing

9

Searching

Resembles a traversal, but two possible sentinels:

● Empty link

● Data item that equals the target item
probe = head
while (probe != None) and (targetItem != probe.data):

 probe = probe.next

if probe != None:

 <targetItem has been found>

else:

 <targetItem is not in the linked structure>

Unfortunately, accessing the ith item of a linked structure is also a sequential search operation.

We start at the first node and count the number of links until the ith node is reached.

 # Assumes 1 <= i <= n,

 # where n is the number of nodes in the linked structure

 probe = head

 for count in range(i – 1) :

 probe = probe.next

 return probe.data

Since linked structures do not support random access, we can’t use a binary search.

Replacement

Replacement operations employ traversal pattern

● If the target item is not present, no replacement occurs and the operation returns False

● If the target is present, the new item replaces it and the operation returns True.

 probe = head

 while (probe != None) and (targetItem != probe.data):

 probe = probe.next

 if probe != None:

 probe.data = newItem

 return True

 else:

 return False

Replacing the ith item assumes 1 <= i <= n

 # Assumes 1 <= i <= n,

 # where n is the number of nodes in the linked structure

 probe = head

 for count in range(i – 1):

 probe = probe.next

 probe.data = newItem

Hwa Chong Institution H2 Computing

10

Inserting at the Beginning

head = Node (newItem, head)

Inserting at the End:

must consider if the head pointer is None, i.e. the linked structure is empty

newNode = Node (newItem, None)

if head == None: # case 1: the head pointer is None

head = newNode

else: # case 2: the head pointer is not None

probe = head

 while probe.next != None:

 probe = probe.next

probe.next = newNode

Hwa Chong Institution H2 Computing

11

Removing at the Beginning

 # Assumes at least one node in the structure

 removedItem = head.data

 head = head.next

 return removedItem

Removing at the End

Assumes at least one node in the structure

if head.next == None: # case 1: there is just one node

removedItem = head.data

head = None

return removedItem

else: # case 2: there is a node before the last node

probe = head

while probe.next.next != None:

 probe = probe.next

 removedItem = probe.next.data

 probe.next = None

 return removedItem

Hwa Chong Institution H2 Computing

12

Inserting at Any Position

Insertion at beginning uses code presented earlier. In other position i, first find the node at

position i - 1 (if 1 < i <= n) or the node at position n (if i = n + 1), where n is the number of

nodes in the linked structure.

There are two cases to consider:

1. The node’s next pointer is None. This means that i = n + 1, so the new item should be

placed at the end of the linked structure.

2. The node’s next pointer is not None. This means that 1 < i <= n, so the new item must

be placed between the node at position i - 1 and the node at position i.

Assumes 1 <= i <= n + 1

if i == 1:

 head = Node (newItem, head)

else:

 # Search for node at position i - 1 or the last position

 probe = head

 for index in range(i – 2):

 probe = probe.next

Insert after node at position i - 1 or last position

 probe.next = Node (newItem, probe.next)

The following shows a trace of the insertion of an item at position 3 in a linked structure

containing three items:

Hwa Chong Institution H2 Computing

13

Removing at Any Position

The removal of the ith item from a linked structure has two cases:

1. i = 1. We use the code to remove the first item.

2. 1 < i <= n. We search for the node at position i – 1, as in insertion, and remove the

following node.

Assumes that the linked structure has at least one item

and 1 <= i <= n

if i == 1:

 removedItem = head.data

 head = head.next

 return removedItem

else:

 # Search for node at position i -1

 probe = head

 for index in range(i – 2):

 probe = probe.next

 removedItem = probe.next.data

 probe.next = probe.next.next

 return removedItem

The following shows a trace of the removal of the item at position 3 in a linked structure

containing four items.

Hwa Chong Institution H2 Computing

14

Tutorial 10A

1. For a linked list of integers referred to by head, write algorithms for the tasks below:

(a) determine the average of all the integers

(b) insert a node before the last node

(c) search for a given item and if found, return a pointer to the predecessor of the

 node containing that item

2. SPP1Q3

(a) Describe, with the aid of a diagram, the data structure called a linked list. [4]

(b) Describe, with the aid of diagrams, an algorithm to add a new data item into the

linked list, so that this new data item occupies position n. You may assume that

the linked list contains at least n – 1 items before the addition.

[6]

(c) An alternative type of list structure is one whose data items are always held in

a contiguous area of store (an array). Give one advantage and one disadvantage

that this has over the linked list organization. [2]

3. N06P1Q8

 A linked list Abstract Data Type (ADT) has the following operations defined:

o create () -- creates an empty linked list;

o insert (item, p) -- insert new value, item, into linked list so that it is at position p

in the linked list;

o delete(p) -- delete the item at position p in the linked list;

o read (p) -- returns the item at position p in the linked list;

o length () -- returns the number of items in the linked list;

The linked list is implemented by the use of a collection of nodes that have two parts:

the item data and a pointer to the next item in the list. In addition there is a Start pointer

which points to the first item in the list.

(a) (i) Draw diagrams to show the two different situations that can arise when the

'delete' operation, specified above, is implemented.

[4]

 (ii) Write an algorithm that could be used to implement the 'delete' operation. [4]

 (iii) Write an algorithm that could be used to implement the 'length' operation. [4]

(b) A list, testList, is created and the following operations are carried out:

testList.insert (ben, 1)

testList.insert (jerry, 1)

testList.insert (harry, 1)

(i) Draw a diagram to show the state of the linked list after the above operations

have been carried out. [4]

(ii) Write the instructions that would delete the last item of testList after further

insert operations have been carried out. [2]

Hwa Chong Institution H2 Computing

15

4. N84P2Q3

 A program is to be written to find and print all the words in a piece of text in

 alphabetical order, together with the number of times each word occurs.

 The data structure that has been chosen to hold this information is a linked list, with

 each node holding a word, the number of occurrences of that word, and a pointer to the

 node containing the next word in alphabetical order.

 (a) Draw diagrams to illustrate the above data structure

 (i) before any words in a piece of text have been read,

 (ii) after reading the following text:

 the man chased the cow

 the cow chased the dog

 the dog chased the cat [9]

 (b) Describe in detail an algorithm which reads a line of text, for example

they all chased the rat

 and updates the contents of the linked list. Assume an instruction is available

 which reads the next word from the line of text. [10]

5. N99P2Q9

Data are to be kept in order of a key in a linked list such as that shown.

Head

 c f m s

There is also a free space list.

Free

 (a) Using pseudocode, write an algorithm which will add a new element to the list.

 You may assume that all the keys are unique. [10]

 (b) Outline how you would delete an element from the list given its key. [4]

6. J89P1Q3

 (a) Describe, with the aid of diagrams, how names may be stored in alphabetical

 order in a linked list structure by using arrays. Use the names Rachel, Majid,

 Sian, Mary, Jonathan as example data. [4]

 (b) Show how the free space can be managed so that items can be easily added to

 or deleted from the linked list. Use as examples

 (i) adding the name Henry to the list;

 (ii) deleting the name Majid from the list. [4]

Hwa Chong Institution H2 Computing

16

10.4 Stack
LIFO (last-in-first-out) structure in which access is completely restricted to just one end, called

the top. It has two basic operations: push and pop.

A stack type is not built into Python, though we can use a Python list to emulate a stack. For

example, use list method append to push and pop to pop. However, the extra list operations

violate the spirit of a stack as an ADT.

Instead, we define a more restricted interface or set of operations for any authentic stack

implementation. We assume that any stack class that implements this interface will also have

a constructor that allows its user to create a new stack instance. Later, we’ll consider two

different implementations: ArrayStack and LinkedStack. For now, assume that someone has

coded these so we can use them:

s1 = ArrayStack()

s2 = LinkedStack()

10.4.1 Stack Interface

In addition to push and pop, a stack interface provides operations for examining the element

at the top of a stack, determining the number of elements in a stack, and determining whether

a stack is empty. A stack type also includes an operation that return a stack’s string

representation. These operations are listed below, where the variable s refers to a stack.

The following shows how the operations listed above affect a stack named s.

Hwa Chong Institution H2 Computing

17

OPERATIO

N

STATE OF

THE STACK

AFTER THE

OPERATION

VALUE

RETURNE

D

COMMENT

 Initially, the stack is empty

s.push (a) a The stack contains the single

item a.

s.push (b) a b b is the top item on the stack

s.push (c) a b c c is the top item.

s.isEmpty () a b c False The stack is not empty.

len (s) a b c 3 The stack contains three items.

s.peek () a b c c Returns the top item on the

stack without removing it.

s.pop () a b c Remove the top item from the

stack and return it. b is now the

top item.

s.pop () a b Remove and return b.

s.pop() a Remove and return a.

s.isEmpty () True The stack is empty.

s.peek () exception Peeking at an empty stack raises

an exception.

s.pop () exception Popping an empty stack raises

an exception.

s.push (d) d d is the top item.

10.4.2 Stack Application: Matching Parentheses

Compilers need to determine if the bracketing symbols in expressions are balanced correctly

Here is an approach which scans the expression and keeps checking on the matching:

Hwa Chong Institution H2 Computing

18

● Scan expression; push left brackets onto a stack

● On encountering a closing bracket, if stack is empty or if item on top of stack is not an

opening bracket of the same type, we know the brackets do not balance

● Pop an item off the top of the stack and, if it is the right type, continue scanning the

expression

● When we reach the end of the expression, stack should be empty; if not, brackets do not

balance

Here is a Python script that implements this strategy for the two types of brackets mentioned.

Assume that the module stack includes the class ArrayStack.

"""

File: brackets.py

Checks expressions for matching brackets

"""

from stack import ArrayStack

def bracketsBalance (exp):

"""exp represents the expression"""

stk = ArrayStack() # Create a new stack

for ch in exp: # Scan across the expression

 if ch in ['[', '(']: # Push an opening bracket

 stk.push (ch)

Process a closing bracket

 elif ch in [']', ')']:

 if stk.isEmpty (): # Not balanced

 return False

 chFromStack = stk.pop ()

 # Brackets must be of same type and match up

 if (ch == ']' and chFromStack != '[') or \

 (ch == ')' and chFromStack != '('):

 return False

return stk.isEmpty () # They all matched up

def main():

 exp = input ("Enter a bracketed expression: ")

 if bracketsBalance (exp):

 print ("OK")

 else:

 print ("Not OK")

main()

Hwa Chong Institution H2 Computing

19

10.4.3 Stack Application: Evaluating Arithmetic Expressions

An arithmetic expression can be represented by two forms:

Infix form: each operator is located between its operands. e.g. A + B

Postfix form: an operator immediately follows its operands. e.g. A B +. This form is also

called “Reverse Polish Notation”.

In both forms, operands appear in the same order. However, the operators do not.

● The infix form sometimes require parentheses; the postfix form never does.

● Infix evaluation involves rules of precedence; postfix evaluation applies operators as soon

as they are encountered.

● For example:

- Infix evaluation: 34 + 22 * 2 🡪 34 + 44 🡪 78

- Postfix evaluation: 34 22 2 * + 🡪 34 44 + 🡪 78

To evaluate an infix expression:

● Step 1: Transform infix expressions to postfix

● Step 2: Evaluate the resulting postfix expressions

Converting Infix to Postfix

● Start with an empty postfix expression and an empty stack

– Stack will hold operators and left parentheses

● Scan across infix expression from left to right

● On encountering an operand, append it to postfix expression

● On encountering a (, push it onto the stack

● On encountering an operator

– Pop off the stack all operators with equal or higher precedence

– Append them to postfix expression

– Push scanned operator onto stack

● On encountering a), pop operators from stack to postfix expression until meeting matching

(, which is discarded

● On encountering the end of the infix expression, pop remaining operators from the stack to

the postfix expression

Hwa Chong Institution H2 Computing

20

Example:

INFIX EXPRESSION:

4 + 5 * 6 - 3

EQUIVALENT POSTFIX EXPRESSION:

4 5 6 * + 3 -

PORTION OF

INFIX

EXPRESSION

SCANNED SO FAR

OPERATOR

STACK
POSTFIX

EXPRESSION
COMMENT

 No characters have been seen yet.

The stack and PE are empty.

4 4 Append 4 to the PE.

4 + + 4 Push + onto the stack.

4 + 5 + 4 5 Append 5 to the PE.

4 + 5 * + * 4 5 Push * onto the stack.

4 + 5 * 6 + * 4 5 6 Append 6 to the PE.

4 + 5 * 6 - - 4 5 6 * + Pop * and +, append them to the PE,

and push -.

4 + 5 * 6 - 3 - 4 5 6 * + 3 Append 3 to the PE.

 4 5 6 * + 3 - Pop the remaining operators off the

stack and append them to the PE.

Example with parentheses:

INFIX EXPRESSION:

(4 + 5) * (6 - 3)

EQUIVALENT POSTFIX EXPRESSION:

4 5 + 6 3 - *

PORTION OF INFIX

EXPRESSION

SCANNED SO FAR

OPERATOR

STACK

POSTFIX

EXPRESSION
COMMENT

 No characters have been seen yet.

The stack and PE are empty.

((Push (onto the stack.

(4 (4 Append 4 to the PE.

(4 + (+ 4 Push + onto the stack.

(4 + 5 (+ 4 5 Append 5 to the PE.

(4 + 5) 4 5 + Pop the stack until (is encountered

and append operators to the PE.

(4 + 5) * * 4 5 + Push * on to the stack.

(4 + 5) * (* (4 5 + Push (onto the stack.

(4 + 5) * (6 * (4 5 + 6 Append 6 to the PE.

(4 + 5) * (6 - * (- 4 5 + 6 Push - onto the stack.

(4 + 5) * (6 - 3 * (- 4 5 + 6 3 Append 3 to the PE.

(4 + 5) * (6 - 3) * 4 5 + 6 3 - Pop the stack until (is encountered

and append operators to the PE.

 4 5 + 6 3 -

*

Pop the remaining operators off

the stack and append them to the

PE.

Hwa Chong Institution H2 Computing

21

Evaluating Postfix Expressions

● Steps:

– Scan across the postfix expression from left to right

– On encountering an operator, apply it to the two preceding operands; replace all three

by the result

– Continue scanning until you reach expression’s end, at which point only the

expression’s value remains

● To express this procedure as a computer algorithm, you use a stack of operands

● In the algorithm, token refers to an operand or an operator:

Create a new stack

While there are more tokens in the expression

 Get the next token

 If the token is an operand

 Push the operand onto the stack

 Else

If the token is an operator

Pop the top-two operands from the stack

Apply the operator to the two operands just popped

Push the resulting value onto the stack

EndIf

 EndIf

EndWhile

Return the value at the top of the stack

Example:

Hwa Chong Institution H2 Computing

22

10.4.4 Stack Application: Memory Management

● The computer’s run-time system must keep track of various details that are invisible to

the programmer:

– Associating variables with data objects stored in memory so they can be located when

these variables are referenced

– Remembering the address of the instruction in which a method or function is called, so

control can return to the next instruction when that function or method finishes

execution

– Allocating memory for a function’s or a method’s arguments and temporary variables,

which exist only during the execution of that function or method

● Whenever a subroutine (function or method) is called (i.e. is activated), an activation

record (or stack frame) is created to store the current environment for that function.

Its contents include parameters; local/temporary variables; return address and return

value.

● What kind of data structure should be used to store these activation records so that

they can be recovered and the system reset when the function resumes execution?

– Problem: FunctionA can call FunctionB

 FunctionB can call FunctionC

– When a function calls another function, it interrupts its own execution and needs

to be able to resume its execution in the same state it was in when it was

interrupted.

 When FunctionC finishes, control should return to FunctionB.

 When FunctionB finishes, control should return to FunctionA.

So, the order of returns from a function is the reverse of function invocations; that

is, LIFO behavior.

– Therefore, use a stack to store the activation records. Since it is manipulated at

run-time, it is called the run-time stack.

What happens when a function is called ?

 1. Push a copy of its activation record onto the run-time stack

 2. Copy its arguments into the parameter spaces

 3. Transfer control to the starting address of the body of the function

Thus, the top activation record in the run-time stack is always that of the function

currently being executed.

● What happens when a function terminates?

1. Pop the activation record of terminated function from the run-time stack

2. Use new top activation record to restore the environment of the

 interrupted function and resume execution of the interrupted function.

Hwa Chong Institution H2 Computing

23

Let’s look at this example of the recursive function for calculating powers.

def Power (x, n):

 # Power() calculates x to the nth power recursively

if n == 0:

 return 1

 else:

 return Power (x, n-1) * x # A

def main():

 print (Power (4, 3)) # B

 main()

– Here we have indicated the return addresses as A and B, that is, the locations of the

instructions where execution is to resume when the program or function is reactivated.

– When execution of the main program is initialised, its activation record is created. This

record is used to store the values of variables, actual parameters, return addresses, and so

on during the time the program is active.

– When execution of the main program is interrupted by the function call Power (4, 3), the

parameters 4 and 3 and the return address B (plus other items of information) are stored in

the activation record, and this record is pushed onto a stack.

 Parameters return value return address

4 3 ? B

 x n r.v. r.a.

 The function Power() now becomes active, and an activation record is created for it.

– When the statement

return Power (x, n-1) * x

is encountered, the execution of Power () is interrupted. The actual parameter 4 and 2

for this function call with parameter x = 4 and n-1 = 3-1 = 2 and the return address A

(and other items of information) are stored in the current activation record, and this

record is pushed onto the stack of activation records.

Second reference to 4 2 ? A

Power (x = 4, n = 2) : 4 3 ? B

 x n r.v. r.a.

Hwa Chong Institution H2 Computing

24

Since this is a new call to Power (), another activation record is created, and when this

function call is interrupted by the call Power (4, 1), this activation record is pushed onto

the stack:

 4 1 ? A

Third reference to 4 2 ? A

Power (x = 4, n = 1) : 4 3 ? B

 x n r.v. r.a.

The call Power (4, 1) results in the creation of yet another activation record, and when its

execution is interrupted, this time by the call Power (4, 0), this activation record is

pushed onto the stack:

 4 0 ? A

Fourth reference to 4 1 ? A

Power (x = 4, n = 0) : 4 2 ? A

 4 3 ? B

 x n r.v. r.a.

– Execution of Power () with parameters 4 and 0 terminates with no interruptions and

calculates the value 1 for Power (4, 0). The activation record for this call is then popped

from the stack, and the execution resumes at the statement specified by the return address

in it:

 First return from Power : 4 0 1 A

4 1 ? A Pop stack and return to

4 2 ? A popped address A with

4 3 ? B function value 1

 x n r.v. r.a.

Execution of the preceding call to Power () with parameters 4 and 1 then resumes and

terminates without interruption, so that its activation record is popped from the stack, the

value 4 is returned, and the previous call with parameters 4 and 2 is reactivated at statement

A:

Second return from Power : 4 1 4 A

4 2 ? A Pop stack and return to

4 3 ? B popped address A with

x n r.v. r.a. function value 4

Hwa Chong Institution H2 Computing

25

– This process continues until the value 64 is computed for the original call Power (4, 3),

and execution of the main program is resumed at the statement specified by the return

address B in its activation record.

Third return from Power : 4 2 16 A

4 3 ? B Pop stack and return to

x n r.v. r.a. popped address A with

 function value 16

Fourth return from Power : 4 3 64 B

x n r.v. r.a. Pop stack and return to

 popped address B with

 function value 64

10.4.5 Stack Implementation using Array

Test Driver

Hwa Chong Institution H2 Computing

26

Output:

Note that the items in the stack print from bottom to top in the stack’s string representation,

whereas when they are popped, they print from top to bottom

Array Implementation

● Built around an array called items and two integers called top and size

● Initially, the array has a default capacity of n positions, top equals -1, and size equals 0

● To push an item onto the stack, you increment the top and size and store the item at the

location items[top].

– size always equals the number of items currently in the stack, whereas top refers to

the position of the topmost item in a nonempty stack.

– An attempt to add an item to a full stack causes an error message. (stack overflow !!)

● To pop the stack, you return items[top] and decrement top and size.

– An attempt to delete an item from an empty stack causes an error message. (stack

underflow !!)

Hwa Chong Institution H2 Computing

27

The array-based stack implementation makes use of the Array class. Here is the code:

class ArrayStack:

 """ Array-based stack implementation."""

 DEFAULT_CAPACITY = 12

 def __init__(self):

 self._items = [''] * ArrayStack.DEFAULT_CAPACITY

 self._top = -1

 self._size = 0

 def push (self, newItem):

 """Inserts newItem at top of stack.

 Precondition: the stack is not full."""

 if self._size == ArrayStack.DEFAULT_CAPACITY:

 print ("Stack is full. Abort operation!!")

 return ""

 else:

 # newItem goes at logical end of array

 self._top += 1

 self._size += 1

 self._items[self._top] = newItem

 def pop(self):

 """Removes and returns the item at top of the stack.

 Precondition: the stack is not empty."""

 if self.isEmpty():

 print ("Stack is empty. Abort operation!!")

 return ""

 else:

 oldItem = self._items[self._top]

 self._top -= 1

 self._size -= 1

 return oldItem

 def peek(self):

 """Returns the item at top of the stack.

 Precondition: the stack is not empty."""

 if self.isEmpty():

 print ("Stack is empty. Abort operation!!")

 return ""

 else:

 return self._items[self._top]

 def __len__(self):

 """Returns the number of items in the stack."""

 return self._size

Hwa Chong Institution H2 Computing

28

 def isEmpty(self):

 return len(self) == 0

 def __str__(self):

 """Items strung from bottom to top."""

 result = ""

 for i in range(len(self)):

 result += str(self._items[i]) + " "

 return result

10.4.6 Stack Implementation using Linked Structure

● Uses a singly linked sequence of nodes with a variable top pointing at the list’s head, and

a variable size to track the number of items on the stack.

● The linked implementation requires two classes: LinkedStack and Node.

● The Node class contains two fields:

– data : an item on the stack

– next : a pointer to the next node

● Pushing and popping are accomplished by adding and removing nodes at the head of the

list.

● Pushing an item onto a linked stack

Step 1: Get a new node

top a b c

 d

 newNode

Step 2: Set newNode.next to top

 top a b c

 d

 newNode

Hwa Chong Institution H2 Computing

29

Step 3: Set top to new node

 top a b c

 d

 newNode

● Popping an item from a linked stack

● The implementation of str is complicated by the fact that the items must be visited from

the end of the linked structure to its beginning

– Solution: use recursion

● Here is the code for LinkedStack:

from node import Node

class LinkedStack:

 """ Link-based stack implementation."""

 def __init__(self):

 self._top = None

 self._size = 0

 def push(self, newItem):

 """Inserts newItem at top of stack."""

 self._top = Node(newItem, self._top)

 self._size += 1

 def pop(self):

 """Removes and returns the item at top of the stack.

 Precondition: the stack is not empty."""

 if self.isEmpty(): # or if self._top == None:

 print ("Stack is empty. Abort operation!!")

 return ""

 else:

 oldItem = self._top.data

 self._top = self._top.next

 self._size -= 1

 return oldItem

Hwa Chong Institution H2 Computing

30

 def peek(self):

 """Returns the item at top of the stack.

 Precondition: the stack is not empty."""

 if self.isEmpty(): # or if self._top == None:

 print ("Stack is empty. Abort operation!!")

 return ""

 else:

 return self._top.data

 def __len__(self):

 """Returns the number of items in the stack."""

 return self._size

 def isEmpty(self):

 return len(self) == 0

 def __str__(self):

 """Items strung from bottom to top."""

 # Helper builds string from end to beginning

 def strHelper(probe):

 if probe == None:

 return ""

 else:

 return strHelper(probe.next) + \

 str(probe.data) + " "

 return strHelper(self._top)

Tutorial 10B

1. Write a program that uses a stack to test input strings to determine whether they are

palindromes. A palindrome is a sequence of words that reads the same as the sequence

in reverse: for example, the word madam or the sentence rats live on no evil star.

2. Write a function

def selectItem (s, n):

that uses stack operations to find the first occurrence of integer n on stack s and move

it to the top of the stack. Maintain ordering for all other elements.

3. Application: Multibase Output

Write a function

def multiBaseOutput (num, b):

that takes a non-negative integer num and a base b in the range 2 – 9 and write num to

the screen as a base b number.

Hwa Chong Institution H2 Computing

31

4. Convert the following infix expressions to postfix (Reverse Polish Notation)

expressions:

a. a + b / c - d

b. a + b / ((c - d) * e) - f

c. (a + b) / c - d + e

d. (b ^ 2 – 4 * a * c) / (2 * a)

5. Evaluate the following postfix (Reverse Polish Notation) expressions:

a. 24 2 4 * /

b. 33 6 + 12 4 / +

c. 32 5 3 + / 5 *

d. 2 17 - 5 / 3 *

6. Explain what is meant by a recursive routine in a program and how a stack may be used

in its implementation. To illustrate your answer, show what happens for the function

call fib(3) where the function fib has a single non-negative integer parameter n and

has the value fibval given by

if n < 2 then fibval = n

 else fibval = fib(n-1) + fib(n-2)

Show the order in which the calls to the function are made, the order in which the

returns are made, and the data that are stacked at each call. Use diagrams wherever

possible in your answer. [17]

7. (a) If a subprogram is to be able to call itself recursively, it is usual for the values of

any variables used in the subprogram to be held in a stack rather than in fixed storage.

Why is this? [2]

(b) The following program includes a procedure which calls itself

 call TEST (4)

 END

 Procedure TEST (X)

 PRINT X

 If X > 1 call TEST (X – 1)

 PRINT X

 END TEST

(i) What numbers will the program print, and in what order?

(ii) Show all the values of X held on the stack each time a PRINT

statement is executed. [6]

Hwa Chong Institution H2 Computing

32

8. A stack is to be used in a high-level language program as a store for up to twelve items.

 The structure set up for this purpose consists of an array STACK, with elements

 STACK[1], STACK[2] , , STACK[12] and a single integer variable SP.

 Initially SP is given the value zero to indicate an empty stack.

(a) Draw a diagram to illustrate the structure after the items ANT, BEE, COW,

DOG, EEL have been stored in the stack, in that order. [2]

(b) Describe carefully the algorithms which would need to be implemented in the

program

(i) to add a new item to the stack,

(ii) to remove an item from the stack

Your algorithms should allow for exceptional cases. [6]

9. An Abstract Data Type (ADT) consists of both data type and associated operations.

A linked list ADT has the following operations defined:

(i) Create (x) -- creates an empty linked list x;

(ii) Insert (x, item, p) -- insert new value, item, into linked list x so that it is at

position p in the linked list;

(iii) Delete (x, p) -- delete the item at position p in the linked list x;

(iv) Read (x, p) -- returns the item at position p in the linked list x;

(v) Length (x) -- returns the number of items in the linked list x;

(vi) IsEmptyList (x) -- returns true if linked list x is empty.

The linked list is implemented by the use of a collection of nodes that have two parts:

the item data and a pointer to the next item in the list. In addition, there is a Start pointer

which points to the first item in the list.

(a) (i) Draw diagrams to show the two different situations that can arise when

 the "Insert" operation specified above is implemented. [4]

(ii) Write an algorithm that could be used to implement the "Insert"

operation. [4]

(b) Show how to implement the following operations for a stack ADT using the list

 ADT operations:

(i) create new stack;

(ii) add item on top of stack;

(iii) delete item from top of stack.

[5]

(c) A dictionary ADT is used to store a key value and a definition of that key

 value. Specify three operations for a dictionary ADT. [6]

(d) State two advantages of using ADTs in program development. [2]

Hwa Chong Institution H2 Computing

33

10.5 Queue

Like stacks, queues are linear collections with the following features:

● Insertions are restricted to one end, called the rear

● Removals are restricted to one end, called the front

● Queues supports a first-in first-out (FIFO) protocol

– E.g. Checkout lines in stores, and airport baggage check-in lines

● Two fundamental operations:

– enqueue : adds an item to the rear of a queue

– dequeue : removes an item from the front

The following figure shows a queue as it might appear at various stages in its lifetime. In the

figure, the queue’s front is on the left, and its rear is on the right.

● Item dequeued, or served next, is always the item that has been waiting the longest

● Most queues in computer science involve scheduling access to shared resources.

- CPU access : Processes are queued for access to a shared CPU

- Printer access : Print jobs are queued for access to a shared laser printer.

Similar to stack, we can use a Python list to emulate a queue, use list method append to add

an element to rear of queue and pop to remove an element from front of queue. However, the

extra list operations violate the spirit of a queue as an ADT.

Instead, we define a more restricted interface or set of operations for any authentic queue

implementation. We assume that any queue class that implements this interface will also have

a constructor that allows its user to create a new queue instance. Later, we’ll consider two

different implementations: ArrayQueue and LinkedQueue. For now, assume that someone

has coded these so we can use them:

q1 = ArrayQueue()

q2 = LinkedQueue()

Hwa Chong Institution H2 Computing

34

10.5.1 Queue Interface

The following shows how the operations listed above affect a queue named q.

OPERATION

STATE OF THE

QUEUE AFTER

THE OPERATION

VALUE

RETURNED
COMMENT

 Initially, the queue is empty

q.enqueue (a) a The queue contains the single item a.

q.enqueue (b) a b a is at the front of the queue and b is

at the rear.

q.enqueue (c) a b c c is added at the rear.

q.isEmpty () a b c False The queue is not empty.

len (q) a b c 3 The queue contains three items.

q.peek () a b c a Returns the front item on the queue

without removing it.

q.dequeue () b c a Remove the front item from the queue

and return it. b is now the front item.

q.dequeue () c b Remove and return b.

q.dequeue () c Remove and return c.

q.isEmpty () True The queue is empty.

q.peek() exception Peeking at an empty queue throws an

exception.

q.dequeue () exception Trying to dequeue an empty queue

throws an exception.

q.enqueue (d) d d is the front item.

Hwa Chong Institution H2 Computing

35

10.5.2 Queue Implementation using Linked Structure

● Enqueue adds a node at the end

– For fast access to both ends of a queue’s linked structure, provide external pointers to

both ends

– Instance variables front and rear of LinkedQueue are given an initial value of None

– A variable named size tracks number of elements currently in queue

● During an enqueue operations, we create a new node, set the next pointer of the last node

to the new node, and finally set the variable rear to the new node as shown below:

Step 1: Get a new node

front D1 D2 D3 D4 D5

rear newNode

Step 2: Set rear.next to the new node

front D1 D2 D3 D4 D5

rear newNode

Step 3: Set rear to the new node

front D1 D2 D3 D4 D5

 rear newNode

Hwa Chong Institution H2 Computing

36

Here is the code for the enqueue method:

 def enqueue (self, newItem):

 """Adds newItem to the rear of queue."""

 newNode = Node(newItem, None)

 if self.isEmpty():

 self._front = newNode

 else:

 self._rear.next = newNode

 self._rear = newNode

 self._size += 1

● Dequeue is similar to pop in that it removes the first node in the sequence. However, if the

queue becomes empty after a dequeue operation, the front and rear pointers must both be

set to None. Here is the code for the dequeue method:

 def dequeue (self):
 """Removes and returns the item at front of the queue.

 Precondition: the queue is not empty."""

 if self.isEmpty():

 print ("Queue is empty. Abort operation!!")

 return ""

 else:

 oldItem = self._front.data

 self._front = self._front.next

 if self._front == None:

 self._rear = None

 self._size -= 1

 return oldItem

Here is the complete code for LinkedQueue:

from node import Node

class LinkedQueue:

 """ Link-based queue implementation."""

 def __init__ (self):

 self._front = None

 self._rear = None

 self._size = 0

 def enqueue (self, newItem):

 """Adds newItem to the rear of queue."""

 newNode = Node(newItem, None)

 if self.isEmpty():

 self._front = newNode

 else:

 self._rear.next = newNode

 self._rear = newNode

 self._size += 1

Hwa Chong Institution H2 Computing

37

 def dequeue (self):

 """Removes and returns the item at front of the queue.

 Precondition: the queue is not empty."""

 if self.isEmpty():

 print ("Queue is empty. Abort operation!!")

 return ""

 else:

 oldItem = self._front.data

 self._front = self._front.next

 if self._front == None:

 self._rear = None

 self._size -= 1

 return oldItem

def peek (self):

 """Returns the item at front of the queue.

 Precondition: the queue is not empty."""

 if self.isEmpty():

 print ("Queue is empty. Abort operation!!")

 return ""

 else:

 return self._front.data

 def __len__ (self):

 """Returns the number of items in the queue."""

 return self._size

 def isEmpty(self):

 return len(self) == 0

 def __str__(self):

 """Items strung from front to rear."""

 result = ""

 probe = self._front

 while probe != None:

 result += str(probe.data) + " "

 probe = probe.next

 return result

10.5.3 Queue Implementation using Array

Array implementations of stacks and queues have less in common than the linked

implementations. Array implementation of a queue must access items at the logical beginning

and the logical end.

– Doing this in computationally effective manner is complex

– We approach problem in a sequence of three attempts

Hwa Chong Institution H2 Computing

38

A First Attempt

● Fixes front of queue at position 0

● rear variable points to last item at position n – 1, where n is the number of items in queue

● For this implementation, the enqueue operation is efficient. However, the dequeue

operation entails shifting all but the first item in the array to the left.

Here is the complete code for ArrayQueue:

class ArrayQueue:

 """ Array-based queue implementation."""

 DEFAULT_CAPACITY = 10 # Class variable applies to all queues

 def __init__(self):

 self._items = [''] * ArrayQueue.DEFAULT_CAPACITY

 self._rear = -1

 self._size = 0

 def enqueue(self, newItem):

 """Adds newItem to the rear of queue.

 Precondition: the queue is not full."""

 if self._size == ArrayQueue.DEFAULT_CAPACITY:

 print ("Queue is full. Abort operation!!")

 return ""

 else:

 # newItem goes at logical end of array

 self._rear += 1

 self._size += 1

 self._items[self._rear] = newItem

 def dequeue(self):

 """Removes and returns the item at front of the queue.

 Precondition: the queue is not empty."""

 if self.isEmpty():

 print ("Queue is empty. Abort operation!!")

 return ""

 else:

 oldItem = self._items[0]

 for i in range(len(self) - 1):

 self._items[i] = self._items[i + 1]

 self._rear -= 1

 self._size -= 1

 return oldItem

Hwa Chong Institution H2 Computing

39

 def peek(self):

 """Returns the item at front of the queue.

 Precondition: the queue is not empty."""

 if self.isEmpty():

 print ("Queue is empty. Abort operation!!")

 return ""

 else:

 return self._items[0]

 def __len__(self):

 """Returns the number of items in the queue."""

 return self._size

 def isEmpty(self):

 return len(self) == 0

 def __str__(self):

 """Items strung from front to rear."""

 result = ""

 for i in range(len(self)):

 result += str(self._items[i]) + " "

 return result

A Second Attempt

● Maintain a second index (front) that points to item at front of queue

– Starts at 0 and advances as items are dequeued

● For this implementation, cells to the left of the queue’s front pointer are unused until we

shift all elements left, which we do whenever the rear pointer is about to run off the end.

A Third Attempt

● Use a circular array implementation

– rear starts at –1; front starts at 0

– front chases rear pointer through the array

– When a pointer is about to run off the end of the array, it is reset to 0

– This has the effect of wrapping the queue around to the beginning of the array without

the cost of moving any items.

Hwa Chong Institution H2 Computing

40

● How the implementation can detect when the queue becomes full?

– Maintain a count of the items in the queue

– When this count equals the size of the array, the queue is full

Here is the complete code for circular ArrayQueue:

class ArrayQueue:

 """ Array-based queue implementation (circular_queue)"""

 DEFAULT_CAPACITY = 10 # Class variable applies to all queues

 def __init__(self):

 self._items = [''] * ArrayQueue.DEFAULT_CAPACITY

 self._rear = -1

 self._front = 0

 self._size = 0

 def enqueue(self, newIem):

 """Adds newItem to the rear of queue.

 Precondition: the queue is not full."""

 if self._size == ArrayQueue.DEFAULT_CAPACITY:

 print ("Queue is full. Abort operation!!")

 return ""

 else:

 # end of array?

 if self._rear == ArrayQueue.DEFAULT_CAPACITY -

1:

 self._rear = 0

 else:

 self._rear += 1

 self._items[self._rear] = newItem

 self._size += 1

 def dequeue(self):

 """Removes and returns the item at front of the queue.

 Precondition: the queue is not empty."""

 if self.isEmpty():

 print ("Queue is empty. Abort operation!!")

 return ""

Hwa Chong Institution H2 Computing

41

 else:

 oldItem = self._items[self._front]

 # end of array?

 if self._front == ArrayQueue.DEFAULT_CAPACITY – 1:

 self._front = 0

 else:

 self._front += 1

 self._size -= 1

 return oldItem

 def peek(self):

 """Returns the item at front of the queue.

 Precondition: the queue is not empty."""

 if self.isEmpty():

 print ("Queue is empty. Abort operation!!")

 return ""

 else:

 return self._items[self._front]

 def __len__(self):

 """Returns the number of items in the queue."""

 return self._size

 def isEmpty(self):

 return len(self) == 0

 def __str__(self):

 """Items strung from front to rear."""

 result = ""

 front = self._front

 for i in range(self._size):

 result += str(self._items[front]) + " "

 if front == ArrayQueue.DEFAULT_CAPACITY - 1:

 front = 0

 else:

 front += 1

 return result

Hwa Chong Institution H2 Computing

42

Tutorial 10C

1. Define a function named stackToQueue. This function expects a stack as an argument.

 The function builds and returns an instance of LinkedQueue that contains the elements

 in the stack. The function assumes that the stack has the interface described in the

 previous stack section. The function’s postconditions are that the stack is left in the

 same state as it was before the function was called, and that the queue’s front element

 is the one at the top of the stack.

2. Write a code segment that uses the % operator during an enqueue to adjust the rear

 index of the circular array implementation of ArrayQueue, so as to avoid the use of an

 if statement. You may assume that the queue implementation uses the variables

 self._rear and self._items to refer to the rear index and array, respectively.

3. A queue is held in an array of records with elements q[1] to q[n]. The queue can contain

 between zero and n items. Write down, using pseudocode, the operations needed

(a) When an item is added to the queue;

(b) When an item is taken from the queue.

Your answer should cope appropriately with the errors of adding an item to a full queue

and taking an item from an empty queue.

[6]

4. One method of implementing a queue is by means of a linked list.

(a) Draw a diagram to show how a queue can be implemented by means of a linked

list.

[2]

(b) Using this representation. Give diagrams and algorithms to show how to

 (i) add an item to the queue;

 (ii) remove an item from the queue.

[8]

Hwa Chong Institution H2 Computing

43

10.6 Binary Search Tree

In a linear data structures (e.g. stacks, queues), all items except for the first have a distinct

predecessor and all items except the last have a distinct successor. In a tree, the ideas of

predecessor and successor are replaced with those of parent and child.

Trees have two main characteristics:

● Each item can have multiple children

● All items, except a privileged item called the root, have exactly one parent

10.6.1 Tree

Hwa Chong Institution H2 Computing

44

Note: The height of a tree containing one node is 0

By convention, the height of an empty tree is –1

Real-life examples:

A parse tree describes the syntactic structure of a particular sentence in terms of its component

parts.

Hwa Chong Institution H2 Computing

45

File system structures are also tree-like. The figure below shows one such structure, where the

directories are labeled “D” and the files are labeled “F”

10.6.2 Binary Tree

In a binary tree, each node has at most two children:

● The left child and the right child

Recursive Definitions of Trees

• A general tree is either empty or consists of a finite set of nodes T. One node r is

distinguished from all others and is called the root. In addition, the set T – {r} is partitioned

into disjoint subsets, each of which is a general tree.

• A binary tree is either empty or consists of a root plus a left subtree and a right subtree,

each of which are binary trees.

Hwa Chong Institution H2 Computing

46

Expression Trees

• Another way to process expressions is to build a parse tree during parsing

• An expression tree is never empty

• An interior node represents a compound expression, consisting of an operator and its

operands

• Each leaf node represents a numeric operand

• Operands of higher precedence usually appear near bottom of tree, unless overridden in

source expression by parentheses

10.6.3 Binary Search Tree

Sorted collections can also be represented as tree-like structures, called a binary search tree,

or BST for short:

• Each node in the left subtree of a given node is less than that node, and

• Each node in the right subtree of a given node is greater than that node

• Can support logarithmic searches and insertions

The shape of a binary search tree depends on its key values and their order of insertion. For the

same elements of letters A, E, F, J, T, the binary search tree depends on the order of insertion.

Insert A, E, F, J, T:

Insert J, E, F, T, A:

Hwa Chong Institution H2 Computing

47

10.6.4 Recursive Binary Search Trees Operations

Binary search trees can be implemented using left and right pointers at each node.

 node

 node.left node.data node.right

In general, binary search tree operations can be easily implemented using recursion, which will

be discussed next. However, we also need to practice on non-recursive procedures in tutorial.

Counting Number of Nodes in a Binary Search Tree

We can determine the number of nodes in the tree if we know the no. of nodes in the left subtree

and the no. of nodes in the right subtree.

Searching a Binary Search Tree

Search returns True if the target item is in the tree; otherwise, it returns False

Class TreeNode:

 def __init__(self, data):
 self.left = None
 self.data = data
 self.right = None

Gets the size of the tree, i.e. count the nodes in the tree

def CountNodes(self, tree):

if tree == None:
 return 0
 else:
 return self.CountNodes(tree.left) +
 self.CountNodes(tree.right)+ 1

Search the tree for item

def Search(self, tree, item):
 if tree == None:
 return False
 elif item < tree.data :
 return self.Search(tree.left, item)
 elif item > tree.data :
 return self.Search(tree.right, item)
 else: # item = tree.data
 return True

Hwa Chong Institution H2 Computing

48

Inserting an Item into a Binary Search Tree

• Insert inserts an item into the BST. Item’s proper place will be in one of three positions:

– The root node, if the tree is already empty

– A node in the current node’s left subtree, if new item is less than item in current node

– A node in the current node’s right subtree, if new item is greater than or equal to item

in current node

• In all cases, an item is added as a leaf node

def Insert(self, newValue, tree): # recursive

 if self.root == None: # insert into empty tree
 self.root = TreeNode(newValue)

 else:
 if newValue < tree.data:
 if tree.left == None:
 tree.left = TreeNode(newValue)
 else:
 self.Insert(newValue, tree.left)

 else: # newValue > tree.data
 if tree.right == None:
 tree.right = TreeNode(newValue)
 else:
 self.Insert(newValue, tree.right)

Hwa Chong Institution H2 Computing

49

Printing All Nodes in a Binary Search Tree

Three standard types of traversals for binary trees:

Preorder traversal: Visits root node, and then traverses left subtree and right subtree in similar

way

 Inorder traversal: Traverses left subtree, visits root node, and traverses right subtree

• Appropriate for visiting items in a BST in sorted order

Prints the tree in Preorder

 def Preorder(self, tree):
 if tree != None:
 print(tree.data)
 self.Preorder(tree.left)

 self.Preorder(tree.right)

Prints the tree in Inorder (ascending

order)

def Inorder(self, tree):
 if tree != None:
 self.Inorder(tree.left)
 print(tree.data)

 self.Inorder(tree.right)

Hwa Chong Institution H2 Computing

50

Postorder traversal: Traverses left subtree, traverses right subtree, and visits root node

Removing an Item from a Binary Search Tree

The focus here is on the conceptual understanding of how nodes are deleted from binary search

tree. Students are not required to write algorithms and programs to delete nodes from binary

search tree.

● Case 1: Deleting a Leaf Node

− Set the parent’s reference to the node to be removed to None

Prints the tree in Postorder

 def Postorder(self, tree):
 if tree != None:
 self.Postorder(tree.left)

 self.Postorder(tree.right)
 print(tree.data)

Hwa Chong Institution H2 Computing

51

● Case 2: Deleting a Node with One Child

● Set the parent’s reference to the node to be removed to the node’s only

child

● Case 3: Deleting a Node with Two Children

● Replace the data value of the node to be removed with the largest value in

the left subtree and delete that value’s node from the left subtree

Delete the node referenced to by tree

if tree.left and tree.right are None #

case 1
 set tree to None
else if tree.left is None # case 2
 set tree to tree.right
else if tree.right is None # case 2
 set tree to tree.left
else # case 3
 find predecessor
 set tree.data to predecessor.data
 delete predecessor

Hwa Chong Institution H2 Computing

52

10.6.5 An Array Implementation of Binary Trees

• An array-based implementation of a binary tree is difficult to define and practical only in

some cases

• For binary trees, there is an elegant and efficient array-based representation

– Elements are stored by level

Given an arbitrary item at position i in the array, it is easy to determine the location of related

items as shown below:

Thus, for item d at location 3, we get the following results:

Hwa Chong Institution H2 Computing

53

Tutorial 10D

1. Draw the binary search tree whose elements are inserted in the following order:

 63, 77, 76, 48, 9, and 10

2. Write an iterative algorithm for searching an item in a tree.

def SearchItem (tree, item) :

Function: Searches item in tree

Postcondition: If found, returns true; otherwise, returns false

3. Write an iterative algorithm for inserting an item in a tree.

def InsertItem (tree, item) :

Function: Adds item to tree

Precondition: item is not in the tree

Postconditions: item is in tree

 Binary search property is maintained

4. For each sequence of characters, draw the binary search tree and traverse the tree

using inorder, preorder, and postorder.

(a) M, T, V, F, U, N

(b) F, L, O, R, I, D, A

5. An arithmetic expression involving the binary operators add (+), subtract (-), multiply

 (*), and divide (/) can be represented using a binary expression tree.

 In a binary expression tree, each operator has two children that are either operands or

 sub-expressions. Leaf nodes contain an operand and non-leaf nodes contain a binary

 operator. The left and right subtrees of an operator describe a sub-expression that is

 evaluated and used as one of the operands for the operator. For instance, the expression

 a + b * c / d - e corresponds to the binary expression tree.

 -

 + e

 a /

 * d

 b c

Hwa Chong Institution H2 Computing

54

(a) Perform preorder, inorder, and postorder traversals of the binary expression tree.

What relationship exists among these scans and the prefix, infix, and postfix

(RPN) notation for the expression?

 (b) For each arithmetic expression, draw the corresponding expression tree.

 By scanning the tree, give the prefix, infix, and postfix form of the expression.

 (i) a - b * c + d (ii) a + b - c * d + e

6. In Morse code each letter of the alphabet is assigned a unique combination of dots and

 dashes. For example, the letters A, B, C and D are coded as follows.

 A

 B

 C

 D

∙ −

− ∙ ∙ ∙

− ∙ − ∙

− ∙ ∙

This coding system can be represented in a binary tree as follows. Each node, except for

the root node, contains a letter of the alphabet. The position of each letter in the tree is

determined by its Morse code. Moving from one node to another down the tree is done

by traversing either a left branch or a right branch. If a left branch corresponds to a ∙ and

a right branch corresponds to a −, the first three levels of the tree look like this.

 Root

(a) What are the Morse codes for the letters I and N? Explain how your answers are

derived from the tree. [2]

(b) Draw a diagram of the binary tree which shows clearly the position of the letters D,

C and B in the tree. [3]

(c) Assuming that the complete binary tree for Morse codes exists, describe in detail

an algorithm which uses the tree to read the Morse code for a letter and to print the

letter. [7]

(d) Explain why this binary tree representation is not the most suitable data structure

for performing English to Morse code conversion. Describe a better alternative, and

explain how the Morse code of a letter could be found. [5]

 E T

 I A N M

Hwa Chong Institution H2 Computing

55

7. Examine the following binary search tree and answer the questions. The numbers on

the nodes are labels; they are not data values within the nodes.

(a) If an item is to be inserted whose data value is less than the data value in node

1 but greater than the data value in node 5, where will it be inserted?

(b) If node 1 is to be deleted, the data value in which node could be used to replace

it?

(c) 4 2 7 5 1 6 8 3 is a traversal of the tree in which order?

(d) 1 2 4 5 7 3 6 8 is a traversal of the tree in which order?

Hwa Chong Institution H2 Computing

56

8. All the words in a piece of text are to be stored in a binary tree. Each node will store a

 word and the number of times that word has occurred in the text so far. As each new

 word is read, it is added to the tree. After processing the first ten words of a particular

 piece of text, the tree looks like this

 root one 2

 man 1 / / the 2 /

 chased 2

 / cat 1 / / dog 2 /

(a) (i) Explain why the first five words of the text could not have been

 the man chased the dog

 (ii) Show the contents of the tree after the next five words

 they never chased the rat

 have been processed. [6]

 (b) The following recursive algorithm printtree has been suggested as a way of

 writing all the words in the text in alphabetical order.

 if tree is not empty then

 Write out the word stored in the current node

 Write out the right sub-tree using printtree

 Write out the left sub-tree using printtree

 ifend

 Unfortunately, printtree does not write out the words in the required order.

 (i) Write down the order in which the words from the above tree would be

 printed by printtree.

(ii) Explain how to rewrite printtree so that the words are printed in

alphabetical order.

 [5]

(c) If, after building a complete tree, all the words had to be printed in order of

decreasing frequency, describe briefly how this could be accomplished

efficiently. [5]

Hwa Chong Institution H2 Computing

57

9. We have learnt how to store a linked list in an array of nodes using index values (array

 index) as "pointers" and managing our list of free nodes. We can use these same

 techniques to store the nodes of a binary search tree in an array, rather than using

 dynamic storage allocation. Free space is linked through the left member.

(a) Show how the array would look after these elements has been inserted in this

 order:

 Q L W F M R N S

.left .data .right

 nodes [0]

free [1]

 [2]

root [3]

 [4]

 [5]

 [6]

 [7]

 [8]

 [9]

(b) Show the contents of the array after "B" has been inserted and "R" has been

 deleted.

.left .data .right

 nodes [0]

free [1]

 [2]

root [3]

 [4]

 [5]

 [6]

 [7]

 [8]

 [9]

