1	For $3kx^2 + (k-6)x - 2 = 0$ to have two distinct roots,
	Discriminant > 0
	$(k-6)^2 - 4(3k)(-2) > 0$
	$k^2 - 12k + 36 + 24k > 0$
	$k^2 + 12k + 36 > 0$
	$\left(k+6\right)^2 > 0$
	$k \in \mathbb{R}, k \neq -6$
2(i)	$Let y = 3\ln(4x^3 + 2)$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\left(\frac{12x^2}{4x^3+2}\right)$
	$36r^2$
	$=\frac{30x}{4x^3+2}$
(ii)	$\int \frac{3x^2 - 2}{\sqrt{x}} dx = \int 3x^{\frac{3}{2}} - 2x^{-\frac{1}{2}} dx$
	$=\frac{3x^{\frac{5}{2}}}{1}-2\frac{x^{\frac{1}{2}}}{1}+C$
	5/2 $1/2$
	$=\frac{6}{5}x^{\frac{5}{2}}-4\sqrt{x}+C$
	where C is an arbitrary constant
•	
3(i)	Let x, y and z be the cost of training one accountant, one financial advisor and one consultant respectively.
	5x + 12y + 8z = 294100
	9x + 7y + 3z = 270100
	3x + 6y + 0z = 122700
	Using GC to solve, $x = 18500$, $y = 11200$, $z = 8400$
	Therefore the cost of training one financial advisor is \$11200 last year.
(ii)	Let <i>n</i> be the number of accounts that company <i>S</i> will be able to train this year. $n(1,1)(18500) + n(1,1)(11200) \le 200000$
	32670n < 200000
	n < 6.12
	The greatest possible number of accountants that company S will be able train is 6.

(iv)

$$\int x + e^{1-2i} dx = \frac{x^2}{2} + \frac{e^{1-2i}}{2} + C$$

$$= \frac{x^2}{2} - \frac{e^{1-2i}}{2} + C$$
where C is an arbitrary constant
Required Area

$$= \left[\frac{x^2}{2} - \frac{e^{1-2i}}{2}\right]_0^0$$

$$= \frac{1}{2} - \frac{e^{-1}}{2} - \left(0 - \frac{e}{2}\right)$$

$$= \frac{1}{2} - \frac{1}{2e} + \frac{e}{2}$$
 units²
5(i)
Number of times that the manager needs to order in a year = $\frac{1200}{x}$
Total ordering cost = $50\left(\frac{1200}{x}\right) = \frac{60000}{x}$
C = Storage Cost + Purchase Cost + Ordering Cost

$$= 6x + 200(1200) + \frac{60000}{x^2}$$
When C is stationary, $\frac{dC}{dx} = 0$
 $6 - \frac{60000}{x^2} = 0$
 $x^2 = 10000$
 $x = 100 \text{ or } -100$ (reject since $x > 0$)
 $\frac{d^2C}{dx^2} = \frac{120000}{x^2}$

	Therefore minimum value of C = $6(100) + 240000 + \frac{60000}{100} = 241200
(iii)	This is not a reasonable model as various components of the cost differs depending on external factors such as the economical climate and real estate climate. For example the rental cost of warehouse will differs from year to year.
(iv)	Let <i>y</i> be the number of television sets sold.
	Gradient of the line $=\frac{1200-0}{300-700} = -3$
	Equation of the line,
	y - 1200 = -3(S - 300)
	y = -3S + 900 + 1200
	= -3S + 2100
	P = Total Selling Price - Total Cost
	= yS - 240000
	=(-3S+2100)S-240000
	$=2100S-3S^2-240000$
(v)	$\frac{dP}{dP} = 2100 - 6S$
	$\frac{dS}{dS}$ = 2100 $\frac{dS}{dS}$
	When P is stationary, $\frac{dP}{dR} = 0$
	dS
	2100 - 6S = 0
	S = 350
	$\frac{d^{2} r}{ds^{2}} = -6 < 0$
	Therefore when S is \$350. P will be maximum.
6i	Let X be the random variable the number of people who have blood group A, out
	of 6.
	$X \sim B(6, 0.4)$
••	$P(X = 2) = 0.31104 \approx 0.311 (3 \text{ s.f.})$
11	$P(at least 4 people do not nave blood group A)$ $= P(X \le 2) = 0.54432 \approx 0.544 (3 \text{ s.f.})$
7i	No of selections = ${}^{8}C_3 \times {}^{4}C_1 \times {}^{6}C_2 = 3360$
ii	Case 1: no guitarist chosen
	No of selections = ${}^{5}C_{3} = 10$
	Case 2: 1 guitarist chosen
	No of selections = ${}^{5}C_{2} \times {}^{3}C_{1} = 30$
	Total number of selections $= 30 + 10 = 40$
iii	P(band contain none of the three guitarists)
	$=\frac{{}^{2}C_{3}}{8c}=\frac{5}{22}$
0.	$C_3 = 28$
- N -1	$P(A \cup B) - P(A) \perp P(B) - P(A \cap B)$

	$0.8 = p + 2p - P(A \cap B)$
	$P(A \cap B) = 3p - 0.8$
	Given $P(A B) = P(A \cap B)$
	Given $P(A B) = \frac{P(B)}{P(B)}$
	Then $0.3 - \frac{3p - 0.8}{2}$
	Then $0.3 = \frac{2p}{2}$
	0.6p = 3p - 0.8
	2.4 p = 0.8
	n = 1
	$p = \frac{1}{3}$
ii	
	$P(A \cap B)$ refers to the probability of event <i>B</i> occurring and <i>A</i> does not occur at all.
	$P(A' \cap B) = P(A \cup B) - P(A)$
	$= 0.8 - \frac{1}{2} = \frac{7}{2}$
	- 0.0 3 15
9i	$P(B) = P($ student studies Business $) = \frac{112}{28} = \frac{28}{28}$
••	
11	$P(F \cup B) = P($ student is female or studies Business)
	$=\frac{140}{100}+\frac{112}{100}-\frac{40}{100}=\frac{53}{100}$
	$\frac{300 300 300 75}{P(M \circ A) - P(\text{ student is mole and studies Art)}}$
111	$P(M \cap A) = P($ student is male and studies $A(t)$
	$=\frac{54}{200}=\frac{9}{50}$
ix	300 50
IV	$P(M) = P($ student is male $) = \frac{100}{200}$
	90
	$P(A) = P($ student studies Art $) = \frac{70}{300}$
	P(4) P(14) 160 90 4
	$P(A) \times P(M) = \frac{1}{300} \times \frac{1}{300} = \frac{1}{25}$
	From (iii) $P(A \cap M) = 9$
	$110 \text{ m}(\text{m}), 1(A + M) = \frac{1}{50}$
	Since $P(A) \times P(M) \neq P(A \cap M)$
	Events <i>M</i> and <i>A</i> are not independent.
V	<i>P</i> (exactly 2 students study Art out of 3) = $\frac{{}^{90}C_2 \times {}^{210}C_1}{{}^{300}C_3} = 0.189$
	Or $=\frac{90}{300} \times \frac{89}{299} \times \frac{210}{298} \times 3 = 0.189 \text{ (3 d.p.)}$

iii	Let $T = A_1 + A_2 + \dots + A_6 + B_1 + B_2 + B_3$
	$E(T) = (6 \times 250) + (3 \times 240) = 2220$
	$Var(T) = (6 \times 9) + (3 \times 16) = 102$
	$T \sim N(2220, 102)$
	$P(2190 < T < 2230) = 0.83746 \approx 0.837$
iv	Let $C = 0.03(B_1 + B_2 +, B_n) - 0.02(A_1 + A_2 +, A_n)$
	D = (D =
	$E(C) = 0.03(10 \times 240) - 0.02(10 \times 250) = 22$
	$E(C) = 0.03(10 \times 240) - 0.02(10 \times 250) = 22$ Var(C) = 0.03 ² (10×16) + 0.02 ² (10×9) = 0.18
	$E(C) = 0.03(10 \times 240) - 0.02(10 \times 250) = 22$ Var(C) = 0.03 ² (10×16) + 0.02 ² (10×9) = 0.18 C ~ N(22, 0.18)