
Hwa Chong Institution H2 Computing

1

 7 Array, List and Dictionary
Learning Outcome

7.1 Array

An array provides a convenient structure for storing data items of the same data type. As you

will see, arrays allow for both easy reading of the data into memory and efficient accessing of

the data for processing.

We will consider two standard types of situations in which arrays are useful:

(1) when a data list must be processed more than once and

(1) when a large number of related summing or counting variables are needed.

7.1.1 One-Dimensional Array

So far, all the variables that we have considered have been a simple data type. A variable of

simple data type consists of a single memory cell that can hold only one value at a time. By

contrast, a variable of structured data type consists of a collection of memory cells.

An array consists of a collection of memory cells for storing a list of values that are all of the

same data type -- for example, a list of integers, a list of real numbers, a list of characters, or

a list of boolean values. The entire list is given a name.

An array can be compared to an apartment building. The name of the array represents the name

of the building. The elements of the array represent the building's apartments, each of which

has a subscript or index, which corresponds to an apartment number.

Assuming that the index starts with 1, Riser[1] is used to specify the first apartment in the

building called Riser, while Riser[4] refers to apartment 4 in the building called Riser

Riser[1] Riser[2] Riser[3] Riser[4]

In order to specify an individual element of an array, you must give both the name of the array

and the subscript. For example, for an array called scores, the statement

 scores[4] ← 86

assigns the value 86 to the memory cell scores[4]. Similarly,

 OUTPUT scores[6]

outputs the contents of the memory cell scores[6].

The following pseudocode assigns values to be stored in an array's elements.

Programming Elements and Constructs

Understand the different data structures: array, list and dictionary; initialize arrays (1-

dimensional and 2-dimensional)

Hwa Chong Institution H2 Computing

2

 // program drill
 BEGIN

 DECLARE X: ARRAY[1:4] of INTEGER

 x[1]←83

 x[2]←59

 x[3]←88

 x[4]←72

 OUTPUT x[4]

 OUTPUT x[2]

 OUTPUT x[2+1]

 OUTPUT x[2]+1

 END

In programming languages where static arrays are used, a declaration of the array would require

the data-type, and the number of elements you want in the array. By specifying these

information, memory cells memory cells are set aside for the array declared.

In the above example, 4 memory cells, x[1], x[2], and x[3], x[4] are set aside, each enough

storage for an integer value. By the time the four assignment statements have been executed,

four numbers will be stored in array x as follows:

x[1] x[2] x[3] x[4]

83 59 88 72

The output will be

 72

 59

 88

 60

Note (Array index out of range):

In the above example, if 4 elements were assumed i.e. x[1..4], You should not access/assign

values to x[5]. This may be accepted in some programming languages, however, it may cause

unpleasant things to happen in the computer memory because the array ranges from x[1] to

x[4].

Using a for Loop to read (access, write) values into the array

The numbers 83, 59, 88, and 72 could be assigned interactively to the array x using a for loop.

 FOR i ← 1 TO 4
 OUTPUT “Enter Element:”
 INPUT x[i]
 ENDFOR

Hwa Chong Institution H2 Computing

3

An important use of arrays is in processing a data list more than once.

Example Suppose a program reads in list of up to 25 non-negative numbers. For example,

the user may input

 enter list of non-negative integer: 41

 enter list of non-negative integer: 68

 enter list of non-negative integer: 32

 enter list of non-negative integer: 74

 enter list of non-negative integer: 55

 enter list of non-negative integer: -999

The following program, in pseudocode, will print the numbers in their original order and then

in reverse order. The printout will be

 original order: 41 68 32 74 55

 reverse order: 55 74 32 68 41

BEGIN

 DECLARE numbs: ARRAY[1:25] of INTEGER

 DECLARE count: INTEGER

 DECLARE num: INTEGER

 count ← 0 // keeps track of the no. of input integers

 // read list of up to 25 non-negative integers into

 // array numbs

 // using input -999 to end list

 OUTPUT "enter non-negative integer:”

 INPUT num

 WHILE(num <> -999 AND count < 25)

 count ← count + 1

 numbs[count] ← num

 OUTPUT "enter non-negative integer:”

 INPUT num

 ENDWHILE

 IF(count>0)

 //prints original order

 OUTPUT "original order:”

 FOR i ← 1 TO count

 OUTPUT numbs[i]

 ENDFOR

 // prints the reverse order

 OUTPUT "reverse order:”

 FOR i ← count DOWN TO 1

 OUTPUT numbs[i]

 ENDFOR

 ENDIF

END

Hwa Chong Institution H2 Computing

4

Remark

(1) The numbs array was declared to hold up to 25 integers. In the while loop that reads

values into the numbs array, count is used as the array subscript.

(2) In the for loop that takes a second look at the array, count is not a subscript but rather

the upper limit of the loop.

(3) You may also assume that the array index starts from 0 ie. numbs[0..24]. In this case,

the pseudocode above, would need to be updated accordingly.

7.1.2 Array of Counting Variables

Arrays are particularly useful when you are tallying a number of related quantities. By using

the array index, you can directly increment the appropriate counter instead of performing a

tedious multiway selection.

Example (Vote Counting) Suppose that in a recently held election, there were four

candidates 1, 2, 3 and 4. Suppose the votes are entered such that 1 represents a

vote for candidate 1, 2 a vote for candidate 2, 3 a vote for candidate 3, and 4 a

vote for candidate 4. –999 will end the list.

That is, the input may consists of a list like

 1 3 1 4 2 1 2 3 etc

We wish to write a program to process the input list. The printout should be of the form

 CANDIDATE NO. OF VOTES

 1 17

 2 38

 3 24

 4 32

We will use the array of voteCnts to keep track of the votes for each of the four candidates.

By the time all the votes have been counted, voteCnts will have the following values:

 voteCnts

[1] 17

[2] 38

[3] 24

[4] 32

At the start of the program, the four memory boxes of voteCnts should be initialized to 0.

Hwa Chong Institution H2 Computing

5

Here is the draft pseudocode.

1. initialize voteCnts to zeros

2. use a loop to read in and process each of the votes; for example, a vote of 3 will increase

voteCnts[3] by 1.

3. use a for loop to print the final values for each of the memory boxes of voteCnts

Processing a Single Vote

The statement

read vote

will read in a vote from the user. The variable vote will have the value 1, 2, 3 or 4.

The value of vote (1, 2, 3 or 4) gives the subscript for the element of voteCnts that should be

increased by 1. So we can just use a single line to count the votes.

 voteCnts[vote] ← voteCnts[vote] + 1

Here is the detailed pseudocode.

// program voting;

// processes the votes and prints each candidate's tally

BEGIN
 CONSTANT VOTERANGE = 4
 DELARE vote: INTEGER
 DECLARE voteCnts: ARRAY [1: VOTERANGE] of INTEGER
 // initialize voteCnts to 0
 FOR i ← 1 TO VOTERANGE
 voteCnts[i] ← 0

// process votes by reading in individual vote and updating // appropriate
// counter

 OUTOUT "enter vote or -999 to end:"
 INPUT vote
 WHILE(vote != -999)
 IF (vote >= 1 AND vote <=4)
 voteCnts[vote] ← voteCnts[vote] + 1
 ELSE
 OUTPUT "Invalid vote"
 ENDIF
 OUTPUT "enter vote or -999 to end:"
 INPUT vote
 ENDWHILE
 // prints the number of votes for each candidate
 OUTPUT "CANDIDATE ", "NO. OF VOTES"
 FOR i ← 1 TO VOTERANGE
 OUTPUT i, voteCnts[i]
 ENDFOR
END

Hwa Chong Institution H2 Computing

6

7.1.3 Parallel Array

Suppose we have a list consisting of the names of students in a class and their respective grade:

 Jones

 92

 Johnson

 88

 Cohen

 92

Write a program, in pseudocode, to read in the above data, find the highest grade achieved and

then print the names of everyone who earned it. There might be one such person, or there

might be more than one. For the above input, the printout would be

 Highest grade 92

 Achieved by:

 Jones

 Cohen

Note that the list of scores will have to be processed twice. A first pass will determine what

the highest score is, and a second pass will print the names of those who share it.

The program will use the parallel arrays names and scores.

In the parallel arrays, a given student's name and score will be contained in memory boxes with

the same subscript. That is, the element scores[i] will contain the score of the student whose

name is in name[i].

Here is how the parallel arrays will be set up for the preceding data.

 Names

 scores

[1] Jones [1] 92

[2] Johnson [2] 88

[3] Cohen [3] 92

Here is the detailed pseudocode.

// program HighScorers;
// prints names of students with highest score
BEGIN
 CONSTANT MAXSIZE = 40
 DECLARE size: INTEGER
 DECLARE maxScore: INTEGER
 DECLARE name:STRING
 DECLARE score:INTEGER

 DECLARE names: ARRAY [1: MAXSIZE] of STRING
 DECLARE scores: ARRAY [1: MAXSIZE] of INTEGER
 size ← 0 // keeps track of the no. of valid

Hwa Chong Institution H2 Computing

7

 //names
 // read all the data into parallel arrays
 // using input ‘xxx’ for name to end input
 OUTPUT "enter name or xxx to end input:"
 INPUT name

 WHILE((name <> "xxx") AND (size < MAXSIZE))
 OUTPUT "enter score of student:"
 INPUT score

 size ← size + 1
 names[size] ← name
 scores[size] ← score

 OUTPUT "enter name or xxx to end input:"
 INPUT name
 ENDWHILE

 IF(size > 0)

 // find the highest score
 maxScore ← scores[1]
 FOR i ← 2 TO size
 IF (scores[i] > maxScore)
 maxScore ← scores[i]
 ENDIF
 ENDFOR
 OUTPUT "Highest grade: ", maxScore

// prints names of those achieving the highest score
 OUTPUT "Achieved by: "
 FOR i ← 1 TO size
 IF (scores[i] = maxScore)
 OUTPUT names[i]
 ENDIF
 ENDFOR
ENDIF

END

Hwa Chong Institution H2 Computing

8

7.1.4 Two-Dimensional Array

So far, all the arrays we have considered have been one dimensional. Thus, only one subscript

has been needed to specify the desired element. When information fits naturally into a

rectangular table with several rows and columns, however, it is often advantageous to store it

in a two-dimensional array, also called a matrix. Two subscripts are necessary to specify an

element in a matrix – a row subscript and a column subscript.

Often, the data being processed can be organized as a table with several rows and columns.

Such an array is called a two-dimensional array or a matrix.

Assuming array index starts from 1 and sales is an array containing five-day sales figures for

the 18 employees of ABC Company. The first row gives the week's sales figures for

salesperson 1, the second row gives the figures for salesperson 2, and so on. For the moment,

we will not concern ourselves with how these values were placed into this array.

 sales

 1 2 3 4 5

1 25 31 29 40 30

2 41 39 38 42 33

3 48 58 62 47 40

.

.

18 30 30 32 34 28

In order to access a particular cell from this array, we must specify the name of the array

followed by the row and column of the desired cell. Thus print sales[2, 3] would cause the

computer to output 38 -- that is, the contents of the cell in the row 2 and column 3. The

statement sales[2,4] = 0 will reassign the content at row 2, column 4 to 0 – that is, the value 42

will change to 0.

Using Data from a Two-Dimensional Array

Suppose we use an array, sales, that can store five-day figures for up to 30 salesperson. We

can do so as follows, in pseudocode:

CONSTANT MAXSIZE = 30
CONSTANT WEEK = 5
DECLARE sales [1:MAXSIZE, 1:WEEK] of INTEGER

Let us write a program fragment that will use the contents of the array sales to output a table

giving each individual salesperson's weekly total. Here is the printout.

 Salesperson 5-day total

 1 155

 2 193

 . .

 18 154

Hwa Chong Institution H2 Computing

9

We will assume that the number of salespeople is stored by the variable size.

Here is the pseudocode:

 // print table heading
 OUTPUT “Salesperson 5-day total”

 FOR salesPerson ← 1 TO size

 // find salesperson's weekly total
 sum ← 0
 FOR day ← 1 TO 5
 sum = sum + sales[salesperson,day]
 ENDFOR
 OUTPUT salesperson, sum
 ENDFOR

Reading Data into a Two-Dimensional Array

Write a program, in pseudocode, that reads in sales figures of a maximum of 30 salespeople

from Monday to Friday and output the contents of names and sales in a matrix format as below:

 Jack 25 31 29 40 30

 Jill 41 39 38 42 33

 .

 .

 John 30 30 32 34 28

Here is the program, in pseudocode.

CONSTANT MAXSIZE = 30
CONSTANT WEEK = 5
DECLARE salesman: INTEGER
DECLARE day: INTEGER
DECLARE name:STRING
DECLARE names:ARRAY[1: MAXSIZE] of STRING
DECLARE sales:ARRAY [1: MAXSIZE, 1: WEEK] of INTEGER
salesman ← 0

// read input of names and sales, xxx to end input list
OUTPUT "enter xxx to end or name of salesman "
INPUT name

WHILE((name <> "xxx") AND (salesman < MAXSIZE))
 salesman ← salesman + 1
 names[salesman] 🡨 name

 OUTPUT “enter sales from Monday to Friday: "

 FOR day ← 1 TO WEEK
 INPUT sales[salesman, day]
 ENDFOR

Hwa Chong Institution H2 Computing

10

 OUTPUT "enter xxx to end or name of salesman "
 INPUT name

ENDWHILE

// output names and sales in matrix form
FOR salesPerson ← 1 TO salesman

 OUTPUT names[salesPerson]

 FOR day ← 1 TO WEEK
 OUTPUT sales[salesperson, day]
 ENDFOR

ENDFOR

7.1.5 Case Study: Dropping the Lowest Score

Professor Fairchild gives four exams and then determines each student's letter mark by taking

the average of the student's three best scores. An A is at least 90, a B is at least 80 but under

90, a C is at least 70 but under 80, a D is at least 60 but under 70, and an F is under 60.

Suppose the program reads in a maximum of 30 students’ name and four exam scores. Entering

“xxx” as the student’s name will end the input list. A sample input data:

 Smith 80 70 79 83

 Jones 90 92 80 91

 .

 .

 Mike 70 75 66 70

Sample output:

 Names Grades

 ================

 Smith B

 Jones A

 .

 .

 Mike C

For each student, the sum of the three top scores can be computed as

 (sum of all four scores) - (lowest score)

In preparation for dropping each student's lowest score, we will find each student's lowest score

and store it in an array called lows.

Hwa Chong Institution H2 Computing

11

In this program, we will use the following parallel data structures:

 names scores lows best3avgs

1 Smith 80 70 79 83 70 80.67

2

.

.

.

size

Here is the pseudocode.

 read all the data into names and scores.

 find each student's low grade and stores these low grades in lows.

 find each student's average for the best three grades.

 print each student's letter grade.

// program LetterGrade
// drops lowest grade in computing students' letter grade

BEGIN
 CONSTANT MAXSIZE = 30
 CONSTANT MAXTEST = 4
 DECLARE size : INTEGER
 DECLARE test : INTEGER
 DECLARE student : INTEGER
 DECLARE studMin: INTEGER
 DECLARE name: STRING

 DECLARE names:ARRAY [1: MAXSIZE] of STRING
 DECLARE scores:ARRAY [1: MAXSIZE, 1: MAXTEST] of INTEGER
 DECLARE lows:ARRAY [1: MAXSIZE] of INTEGER
 DECLARE avgs:ARRAY[1:MAXSIZE] of FLOAT

 size ← 0

 // read input names and scores into respective arrays
 OUTPUT "enter xxx to end or name of student ", size

INPUT name
 WHILE((name<> "xxx") AND (size < MAXSIZE))
 size ← size + 1
 names[size] ← name

Hwa Chong Institution H2 Computing

12

 OUTPUT "enter the 4 test scores: "
 FOR test ← 1 TO MAXTEST
 INPUT scores[size, test]

 ENDFOR

 OUTPUT "enter xxx to end input or name of student "
 INPUT name
 ENDWHILE

 // find low grade of each student and store it in an array
 FOR student ← 1 TO size
 studMin ← scores[student,1]
 FOR test ← 2 TO MAXTEST
 IF (scores[student, test] < studMin)
 studMin ← scores[student, test]
 ENDIF
 lows[student] = studMin
 ENDFOR

 // find average of each student's 3 highest scores by dropping lowest score
 FOR student ← 1 TO size
 sum ← 0
 FOR test ← 1 TO MAXTEST
 sum = sum + scores[student, test]
 avgs[student] ← (sum - lows[student]) / 3
 ENDFOR

 // assigns a letter grade to each student and prints it
 OUTPUT "Names Grades"
 OUTPUT "================"
 FOR student ← 1 TO size
 OUTPUT names[student]
 IF (avgs[student] >= 90)
 OUTPUT "A"
 ELSE IF (avgs[student] >=80)
 OUTPUT "B"
 ELSE IF (avgs[student] >= 70)
 OUTPUT "C"
 ELSE IF (avgs[student] >= 60)
 OUTPUT "D"
 ELSE
 OUTPUT "F"
 ENDIF
 ENDFOR
END

Hwa Chong Institution H2 Computing

13

7.1.6 Initiating Arrays in Python

To initiate a one-dimensional array, we can assign default values or strings as its content.

For example,

score = [0] * 10 initiated an array score of size 10, and each cell has an initial value of 0.

name = [''] * 10 initiated an array name of size 10, and each cell has an initial empty string.

Different from pseudocode, the index always starts with 0.

Two-dimensional array requires a for loop. The code below initiated an array of size 3x4.

Tutorial 7A

1. A basketball team with six players has played four games. Write a program, in

pseudocode, that accepts each player’s name followed by the points scored by them in

each of the four games. A typical input data is given below for one player.

 Smith

 12 14 7 10

Then, print the raw data entered in a table form. Include in the table, each player’s

scoring average, and the number of points scored by the team for each game.

2. Write a program, in pseudocode, to read the name and the closing prices of several

stocks for each weekday of last week into two parallel arrays. For each stock, the

program should print the maximum and minimum price and the day it was achieved.

3. A class has at most 40 students. Write a program, in pseudocode, that will read in the

scores of an exam for each student in the class, finds and prints the class average and

then prints each of the scores that are above the class average. For example, if the

input scores are as follow:

 70

 80

 71

 58

 79

 92

the output would be

 class average: 75.0

 scores above average: 80 79 92

Hwa Chong Institution H2 Computing

14

7.2 Lists

• List: Sequence of data values (items or elements)

• Some examples:

– To-do list

– Recipe, which is a list of instructions

– Text document, which is a list of lines

– Words in a dictionary

• Each item in a list has a unique index that specifies its position (from 0 to length – 1)

7.2.1 List Literals and Basic Operators

• Some examples:

['apples', 'oranges', 'cherries']

[[5, 9], [541, 78]]

• When an element is an expression, its value is included in the list:

• Lists of integers can be built using range:

Hwa Chong Institution H2 Computing

15

• len, [], +, and == work on lists as expected:

• To print the contents of a list:

• in detects the presence of an element:

7.2.2 Replacing Elements in a List

A list is mutable:

• Elements can be inserted, removed, or replaced

• The list itself maintains its identity, but its state—its length and its contents—can change

Subscript operator is used to replace an element. Subscript is used to reference the target of

the assignment, which is not the list but an element’s position within it.

We can also use list to assign values to multiple items:

Hwa Chong Institution H2 Computing

16

7.2.3 Inserting and Removing Elements in a List

Notice that append takes an element and extend takes a list. If we swap the input, the output

is very different.

Hwa Chong Institution H2 Computing

17

7.2.4 Searching a List

• in determines an element’s presence or absence, but does not return position of element

• Use method index to locate an element’s position in a list. It raises an error when the

target element is not found.

7.2.5 Sorting a List

• A list’s elements are always ordered by position, but you can impose a natural ordering

on them. For example, in alphabetical order.

• When the elements can be related by comparing them <, >, and ==, they can be sorted

The method sort mutates a list by arranging its elements in ascending order

7.2.6 Mutator Methods and the Value None

• All of the functions and methods examined in previous chapters return a value that the

caller can then use to complete its work

• Mutator methods usually return no value of interest to caller. Python automatically

returns the special value None.

Notice that append, extend, insert, and sort are all mutator methods.

7.2.7 Aliasing and Side Effects

Mutable property of lists leads to interesting phenomena:

In this case, if we change any element of first, second will make the same change as well. To

prevent aliasing, copy contents of object.

Hwa Chong Institution H2 Computing

18

Recall that in Section 6.2, we learn that string is immutable. It will be different if we try the

above example on strings.

7.2.8 Equality: Object Identity and Structural Equivalence

7.2.9 Tuples

A tuple resembles a list, but is immutable. It is indicated by enclosing its elements in ().

Most of the operators and functions used with lists can be used in a similar fashion with

tuples.

Alternativ
e:

Hwa Chong Institution H2 Computing

19

Tutorial 7B

1. Assume that the variable data refers to the list [5, 3, 7]. Write the values of the following

expressions:

(a) data[2]

(b) data[-1]

(c) len(data)

(d) data[0:2]

(e) 0 in data

(f) data + [2, 10, 5]

(g) tuple(data)

2. Assume that the variable data refers to the list [5, 3, 7]. Write the expression that perform

the following tasks:

(a) Replace the value at position 0 in data with that value’s negation.

(b) Add the value 10 to the end of data.

(c) Insert the value 22 at position 2 in data.

(d) Remove the value at position 1 in data.

(e) Add the values in the list newData to the end of the data.

(f) Locate the index of the value 7 in data, safely.

(g) Sort the values in data.

3. Write a loop that accumulates the sum of all the numbers in a list named data.

4. Assume that data refers to a list of numbers, and result refers to an empty list. Write a

loop that adds the nonzero values in data to the result list.

5. Write a loop that replaces each number in a list named data with its absolute value.

Hwa Chong Institution H2 Computing

20

7.3 Dictionaries
• A dictionary organizes information by association, not position

Example: When you use a dictionary to look up the definition of “mammal,” you don’t start

at page 1; instead, you turn directly to the words beginning with “M”

• Data structures organized by association are also called tables or association lists

• In Python, a dictionary associates a set of keys with data values

7.3.1 Dictionary Literals

A Python dictionary is written as a sequence of key/value pairs separated by commas

– Pairs are sometimes called entries

– Enclosed in curly braces { and }

– A colon (:) separates a key and its value

– Keys can be data of any immutable types, including other data structures

{'Sarah':'476-3321', 'Nathan':'351-7743'} A Phone book

{'Name':'Molly', 'Age':18} Personal information

{} An empty dictionary

7.3.2 Adding Keys and Replacing Values

Add a new key/value pair to a dictionary using []:

Use [] also to replace a value at an existing key:

7.3.3 Accessing Values

• Use [] to obtain the value associated with a key

• If key is not present in dictionary, an error is raised

• If the existence of a key is uncertain, test for it using the method get

Hwa Chong Institution H2 Computing

21

7.3.4 Removing Keys

• To delete an entry from a dictionary, remove its key using the method pop

• pop expects a key and an optional default value as arguments

7.3.5 Traversing a Dictionary

We can use a for loop to print all of the keys and their values:

Alternatively, we can use list and dictionary methods to print all the keys, values, or both.

Notice that when we print items, all entries are represented as tuples within the list.

Hwa Chong Institution H2 Computing

22

Tutorial 7C

1. Assume that the variable data refers to the dictionary {“b”:20, “a”:35}. Write the

values of the following expressions:

(a) data[“a”]

(b) data.get(“c”, None)

(c) len(data)

(d) list(data.keys())

(e) list(data.values())

(f) data.pop(“b”)

(g) data # After the pop above

2. Assume that the variable data refers to the dictionary {“b”:20, “a”:35}. Write the

expressions that perform the following tasks:

(a) Replace the value at the key “b” in data with that value’s negation.

(b) Add the key/value pair “c”:40 to data.

(c) Remove the value at key “b” in data, safely.

(d) Print the keys in data in alphabetical order.

3. Make a dictionary where the keys are the names of weight lifting exercises, and the

values are the number of times you did that exercise. Use a for loop to print out a

series of statements such as "I did 10 bench presses".

4. What are the similarities and difference among One-Dimensional Array, Parallel Array,

Two-Dimensional Array, List and Dictionary?

Assignment 7

1. Write a program that compute the median and mode of a set of numbers. It reads a list

of numbers from a text file and print their median and mode.

2. Write a program that allows the user to navigate the lines of text in a file. The program

should prompt the user for a filename and input the lines of text into a list. The program

then prints the number of lines in the file and prompts the user for a line number. Actual

line numbers range from 1 to the number of lines in the file, If the input is zero, the

program quits. Otherwise, the program prints the line associated with that number.

3. Assume a file contains words separated by newlines.

(a) Write a program that print all of the unique words in the file in alphabetical order

(b) Write a program that output the unique words and their frequencies in alphabetical

order

(c) Write a program that output the most frequent word(s) in alphabetical order

