

RAFFLES INSTITUTION H2 Mathematics 9758 2023 Year 6 Term 3 Revision 16

Topic: Review the Use of Graphing Calculators

In this revision, we will review the *use of graphing calculators* for the following topics. There may be tricks that you may not be aware of.

- 1: Graphing Functions
- 2: Graphing Parametric Equations
- **3: Equations & Inequalities**
- 4: Complex Numbers
- 5: Discrete Random Variables

1: Graphing – Functions

Skills Required: By using the FUNCTION mode,

- 1. Sketch the graphs of functions and composite functions [Y=, WINDOW, ZOOM].
- 2. Determine the *y*-value for a given *x*-value [[CALC] value].
- 3. Determine the *x*-intercepts [[CALC] zero].
- 4. Determine the coordinates of the minimum & maximum points [[CALC] minimum/maximum]
- 5. Determine the points of intersection of 2 graphs [[CALC] intersect].

6. Determine the gradient of the function [[CALC] $\frac{dy}{dx}$ OR nDeriv].

- 7. Determine the area bounded by the function with the x-axis [[CALC] $\int f(x) dx$ OR fnInt].
- 8. Sketch piecewise functions (OS 5.3.0 and 5.3.1) [MATH B: piecewise]

Exercise 1

(a) Functions f and g are defined as follows:

$$f(x) = \frac{x^2 - 2x - 1}{x + 2}, \quad \text{for } x \in \mathbb{R}, \ x \neq -2,$$
$$g(x) = x - 3 - e^{-x} - \ln(x + 1), \quad \text{for } x > -1.$$

Sketch, on separate diagrams, showing clearly any asymptotes, intersections with the axes and coordinates of stationary points, the graphs of

(i)
$$y = f(x)$$
, (ii) $y = g(x)$ [Note for Teachers: May need to guide students for (ii)].

The function h is defined as

$$h: x \mapsto f(x), \text{ for } x \in \mathbb{R}, x > -2.$$

- (iii) Find the equation of the tangent to y = gh(x) at the point where x = 0.
- (iv) Find the area bounded by the graph of y = gh(x) with the x-axis.

- (v) Solve the inequality $gh(x) < 2\ln(x+1)$.
- (b) Sketch the curve $y = 1 + \frac{1-10x}{x(x+1)}$, $x \in \mathbb{R}$, $x \neq -1$, $x \neq 0$, stating clearly equations of any asymptotes, intersections with the axes and coordinates of turning points.

(c) Sketch the graph of
$$y = f(x)$$
 where $f(x) = \begin{cases} \sin x + \cos x - 1 & \text{for } -\frac{7}{12}\pi \le x < 0, \\ -\sqrt{1 - \frac{(x-2)^2}{4}} & \text{for } 0 \le x \le 2. \end{cases}$

State clearly the coordinates of the endpoints.

(i) Use $Y_1 = \frac{x^2 - 2x - 1}{x^2 - 2x - 1}$ to sketch $y = f(x)$.	(ii) Use $Y_2 = x - 3 - e^{-x} - \ln(x+1)$ to sketch				
x+2	y = g(x). [Note for Teachers: GC will not show				
	the complete graph below (regardless of zoom)]				
Asymptotes: $y = x - 4$, $x = -2$	Asymptote: $x = -1$				
Intercepts: (-0.414, 0), (2.41, 0), (0, -0.5)	Intercepts: (-0.999, 0), (4.76, 0), (0, -4)				
Stationary Points: (0.646, -0.708), (-4.65, -11.3)	Stationary Point: (-0.659, -4.52)				
(iii) Use $Y_3 = Y_2(Y_1)$ to sketch $y = gh(x)$	(iv) Use [[CALC] zero] to obtain $x = -1.3044$ and				
Use $[[CAUC]]$ value t_0 obtain $y = -4.46$ at $r = 0$	x = 8.0638 when $y = 0$. Use [[CALC] $\int f(x) dx$] to obtain area = 26.3 units ² <u>OR</u> Type $\int_{-1.3044}^{8.0638} (Y_3) dX$ on the home screen.				
Use [[$UALU$] value] to obtain $y = -4.40$ at $x = 0$	(v) Sketch $Y_3 = Y_2(Y_1)$ and $y = 2\ln(x+1)$				
<u>OR</u> Type $Y_3(0)$ on the home screen. Use [[CALC] $\frac{dy}{dx}$] to obtain $\frac{dy}{dx} = -0.487$ at $x = 0$					
<u>OR</u> Type $\left \frac{d}{dX}(Y_3) \right _{X=0}$ on the home screen.	Image:				
Equation of tangent at $x = 0$ is	x = -0.786 and $x = 14.5$				
y = -0.487x - 4.46	$gh(x) < 2\ln(x+1) \Longrightarrow -0.786 < x < 14.5$				

Answers to Exercise 1(a)

Answers to Exercise 1(b) & 1(c)

2: Graphing – Parametric Equations

Skills Required: By using the PARAMETRIC mode,

- 1. Sketch the curve for the given domain [Y=, WINDOW].
- 2. Determine the coordinates of a point on the curve [TRACE], [CALC] value].
- 3. Determine the gradient of the curve at a point [[CALC] $\frac{dy}{dx}$ OR nDeriv].
- 4. Obtain the value of an integral with parametric equations [fnInt].

Exercise 2

(a) A curve has parametric equations $x = \sin 2\theta + \sin \theta$, $y = \cos \theta$, where $0 \le \theta \le \frac{2\pi}{3}$.

(i) Find the equation of the tangent to the curve at the point where $\theta = \frac{\pi}{2}$.

(ii) Sketch the curve, giving the coordinates of any intercepts.

- (b) A curve has parametric equations $x = \cos^2 t$, $y = \sin^3 t$, for $0 \le t \le \frac{\pi}{2}$.
 - (i) Sketch the curve, giving the coordinates of any intercepts.
 - (ii) Find the area bounded by the curve and the axes.

Answers to Exercise 2(a)

(i) Use
$$X_{1T}$$
 and Y_{1T} to sketch the curve. Use [[CALC] value]
to obtain $x = 1$ and $y = 0$ at $\theta = \frac{\pi}{2}$. Use [[CALC] $\frac{dy}{dx}$] to obtain
 $\frac{dy}{dx} = \frac{1}{2}$ at $\theta = \frac{\pi}{2}$. [OR Type $X_{1T}(\frac{\pi}{2})$, $Y_{1T}(\frac{\pi}{2})$, etc.]
Equation of tangent at $\theta = \frac{\pi}{2}$ is $y = \frac{1}{2}(x-1)$.
(ii) Intercepts: (1, 0), (0, 1), (0, -0.5)

(i) Use X_{2T} and Y_{2T} to sketch the curve.	(ii) Type $\int_{\pi/2}^{0} (Y_{2T} \times \frac{d}{dT} (X_{2T}) \Big _{T=T}) dT$ or				
	$\left \int_{0}^{\pi/2} (X_{2T} \times \frac{d}{dT} (Y_{2T}) \right _{T=T}) dT \text{on the home} $				
Intercepts: $(0, 1)$ and $(1, 0)$	screen to get required area = 0.4 units ² .				

3: Equations & Inequalities

Skills Required:

- 1. Solve equations & inequalities.
- By using <u>APPS</u> → **PlySmlt2** → SIMULTANEOUS EQN SOLVER,
- 2. Solve system of linear equations.

Exercise 3

(a) Find the smallest positive integer *n* such that $10000(1-0.9^n) < 25n(n+3)$.

(b) Find, for
$$-2 \le x \le 2$$
, the set of values of x such that $\left| e^x \sin x - \left(x + x^2 + \frac{x^3}{3} \right) \right| < 0.05$.

- (c) Use your calculator to find a vector equation of the line of intersection between π_1 : $\mathbf{r} \cdot (\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}) = 4$ and π_2 : $\mathbf{r} \cdot (\mathbf{i} \mathbf{j} \mathbf{k}) = 4$.
- (d) A finite arithmetic progression $u_1, u_2, u_3, ..., u_{2n}$ has first term *a* and common difference *d*.

It is given that $\frac{u_{n+1}}{u_n} = \frac{4027}{4025}$, $u_n + u_{2n} = 36228$ and the average of all the odd-numbered terms is 12 075. By formulating three equations involving *a*, *d* and *nd*, find the values of *a*, *d* and *n*.

Answers to Exercise 3

$$\mathbf{r} = \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}, \ t \in \mathbb{R} .$$

$$2a - 4027d + 2nd = 0$$

$$2a - 2d + 3nd = 36228$$

$$a - d + nd = 12075$$
From the GC, $a = 3, d = 6$ and
 $nd = 12078 \implies n = 2013$

4: Complex Numbers

Skills Required:

- 1. Perform operations on complex numbers.
- By using APPS → PlySmlt2 → POLYNOMIAL ROOT FINDER,
- 2. Find the roots of a polynomial equation with real coefficients.
- By using $MATH \rightarrow CMPLX$,
- 3. Find the conjugate, modulus and argument of a complex number.
- 4. Convert a complex number from the Cartesian form to the Polar form and vice versa.

Exercise 4

(a) Evaluate the following: (i)
$$\frac{(3+4i)^3}{(1-i)^5}$$
, (ii) $\sqrt{5-12i}$. [(i) $\frac{161}{8} + \frac{73}{8}i$; (ii) $3-2i$]

(b) Find the roots of the following equations:

(i) $z^{2} + (-1+4i)z + (-5+i) = 0$, (ii) $z^{4} - 2z^{3} + 8z - 16 = 0$.

(c) Find the conjugate, modulus and argument of

(i)
$$(3-i)(i-3)$$
, (ii) $\frac{(5-i)}{(3+2i)}$. [(i) $-8-6i$, 10, 2.50; (ii) $1+i$, $\sqrt{2}$, $-\frac{\pi}{4}$]

- (d) Express the following complex numbers in cartesian form.
 - (i) $\sqrt{2}e^{\left(\frac{\pi}{4}\right)^{i}}$, (ii) $2e^{\left(\frac{\pi}{3}\right)^{i}}$. [(i) 1+i; (ii) $1+\sqrt{3}i$]
- (e) Express the following complex numbers in polar form.

(i)
$$\frac{(2+2i)}{(i-1)}$$
, (ii) $\left(-\frac{1}{2}-\frac{\sqrt{3}}{2}i\right)(i-\sqrt{3})$. [(i) $2e^{-\left(\frac{\pi}{2}\right)i}$; (ii) $2e^{\left(\frac{\pi}{6}\right)i}$]

Answers to Exercise 4(b)

(a)(i) Note: GCs with older OS cannot perform division in Math Print, i.e. fraction.					
(b)(i) [Use Quadratic Formula & GC] z = 2 3i or 1 i	(b)(ii) [Use APPS] $+2 + \sqrt{2}$				
2 = 2 = 3101 = 1 = 1	$z = \pm 2, 1 \pm \sqrt{31}$				

5: Discrete Random Variables

Skills Required: Use of STAT, summation, [TABLE].

Exercise 5

(a) Find the mean and standard deviation of the random variable *X* with the following probability distribution:

X	-4	-3	-2	-1	0	1	2	3
P(X = x)	0.0	0.1	0.2	0.1	0.1 5	0. 1	0. 1	0.0 5

(b) A committee of 12 people is chosen at random from a group consisting of 24 women and 16 men. The number of women on the committee is denoted by R.

Use your calculator to find

- (i) $P(R \ge 6)$,
- (ii) the probability that *R* is divisible by 3,
- (iii) E(R),
- (iv) $\operatorname{Var}(R)$,
- (v) the most probable number of women on the committee.

Answers to Exercise 5

