
Answers to 2024 Preliminary Examination 6092/3:

No.	Answers	Marks	Comments	
1ai	 [1] Records initial (burette) reacheadings and <u>units</u> in the tange of ta	[5]		
1aii	Average volume of P = (Reading 1 + Reading 2) / 2 = <u>23.40 cm³</u> [1]	[1]		
1aiii	No. of moles of P reacted = 1.5 Based on mole ratio, no. of mol = $0.0351 / 2 = 0.01755$ mol Molar concentration of Q = 0.01 3.s.f., deduct one mark)	[2]		
1aiv	$M_r ext{ of Na}_2 ext{CO}_3 ext{ *xH}_2 ext{O} = 200 / 0.70$ $M_r ext{ of Na}_2 ext{CO}_3 ext{ *xH}_2 ext{O} = 106 + x (200)$ $x = 9.94 \approx 10$ (nearest whole number)	18) = 284.900	[2]	

1av	After rinsing, some of Q would have reacted with (residual) P (HC/) OR Q is neutralised with P, hence the <u>number of moles of Q transferred to the conical flask would be</u> less (than expected) [1].	[2]	
	The <u>Mr of Na2CO3•xH2O will therefore be larger (than expected)</u> , and the (value of x <u>OR</u>) amount of water of crystallisation would also be larger (than expected) [1].* Note that student must show understanding of "water of crystallisation", otherwise award [0].		
1b	 Prepare a recording table as follows: Mass of empty boiling tube / g Mass of boiling tube and Na₂CO₃ crystals (before heating) / g b Mass of boiling tube and content (after 1st heating) / g C Mass of boiling tube and content (after 2nd heating) / g d Mass of boiling tube and content (after 3rd heating) / g d Mass of boiling tube and content (after 3rd heating) / g d Using an electronic mass balance, measure and record the mass of an empty boiling tube. Transfer the Na₂CO₃ crystals to the boiling tube. Measure and record the total mass of boiling tube and Na₂CO₃ crystals. Heat the boiling tube for approximately 2-3 minutes (max. of 5 mins) and leave the boiling tube to cool to room temperature [1]. Reweigh the boiling tube and its content and record the mass (after 1st heating). Repeat Steps 4 and 5 until a constant mass is obtained [1]. Calculate the mass of water of crystallisation lost: mass of water of crystalliation = (b-d) g Calculate the value of x: nNa₂CO₃ : nH₂O = 1: x = [(d-a)/(106 which is M_r of Na₂CO₃)] : [(b-d)/(18 which is M_r of H₂O)] Apparatus – Boiling tube (or suitable apparatus, e.g. crucible/evaporating dish) <u>AND</u> electronic (mass) balance (REJECT: test-tube/beaker/conical flask) Recording of "mass of empty boiling tube/g" <u>AND</u> "mass of boiling tube and Na₂CO₃ crystals (before heating)/g" 	[6]	
	 [1] Recording of "mass of boiling tube and content (<u>after</u> heating)/g" [1] Calculation of Steps 7 & 8 to determine the value of x 		

ai	mass of sodium carbonate added = 5.12 g (acceptable range of 4.80g – 5.25g)									[2		
time / I	min	0	1	2	3	4	5	6	7	8		
tempe	rature / °C	29.0	29.0	29.0		32.5	32.0	32.0	32.0	32.0		
	alues of <u>BOTH</u> alues of <u>ALL</u> to						d mass of	Na ₂ CO ₃	added is	within rar	nge	

	 [1] All plotted points must be present (but allow for one error) [1] Axis labels AND units [1] Appropriate scales of both axes (e.g. in 2/5/10) [1] Best-fit straight lines (i.e. no curve, connect-the-dots, crooked/thick lines and MUST include straight line at 3rd min with connections to 2 straight lines before and after addition) Maximum temperature change = 32.6 - 29.0 = + 3.6 °C [1] 		
	(MUST be (i) based on graph drawn, (ii) dotted lines, (iii) 1.d.p and (iv) workings)		
2aiii	Amount of heat change = $(100)(3.6)(4.2) = 1512 \text{ J} = \frac{1510 \text{ J}}{100000000000000000000000000000000000$	[1]	
2aiv	No. of moles of Na ₂ CO ₃ used = $5.12 / 106 = 0.048302 \text{ mol} = 0.0483 \text{ mol}$	[1]	
2av	Enthalpy change of reaction = - (1512 / 0.048302) = - 32945 J/mol = <u>- 31.3 kJ/mol</u> [1] Numerical answer and sign for enthalpy change of reaction [1] Answers to 3 significant figures for (a)(iii), (a)(iv) <u>AND</u> (a)(v).	[2]	
2avi	 error: <u>Acid spray resulting in loss of volume of solution</u> [1] in the Styrofoam cup. OR <u>Heat loss to the surrounding</u> effect on the value of enthalpy change of reaction calculated: Since the volume of solution in the Styrofoam cup is less, <u>the amount of heat change calculated will be less than expected</u> OR <u>the highest temperature recorded is lower than expected</u> AND the <u>value of the enthalpy</u> <u>change of reaction will be smaller (than expected)</u> [1]. improvement: <u>Cover the Styrofoam cup with a (plastic) lid</u> [1] with a hole for the thermometer, immediately after adding sodium carbonate. 	[3]	
2b	Add (excess) aqueous sulfuric acid (or H ₂ SO ₄ (aq)) [1] to a sample of sodium carbonate. If barium carbonate is present, a white precipitate [1] (of barium sulfate) will be observed. Otherwise, if barium carbonate is not present, there will be no precipitate formed.	[2]	

3a	test	observations	[4]	
	1	The solid <u>dissolves</u> to form a <u>green solution</u> [1].		
	2	A green precipitate is formed, which is insoluble in excess NaOH (aq) [1].		
		No observable change [1]		
	3	A <u>white precipitate</u> is formed in a green solution[1].		
	no effer	hat any contradictory observations in above table (e.g. mentioning "effervescence", when vescence evolved), student will be awarded [0]. For subsequent questions in (b) and (c), s cannot contradict the observations seen, otherwise be awarded [0].		
3b		h a green precipitate is formed when NaOH (aq) is added, <u>the green precipitate did not</u> dish-brown when the test-tube is left to stand [1]. This confirms that Fe ²⁺ (aq) is absent.	[1]	
	* Note ti on Test	hat this mark can only be awarded if student did not write contradictory observation based 2.		
3c		INO ₃ (aq) is added to the Y, there was no effervescence observed, thus confirming that aq) is absent.	[1]	
	* Note to on Test	hat this mark can only be awarded if student did not write contradictory observation based 1.		

End of Paper