

# ANDERSON JUNIOR COLLEGE

# 2015 JC 2 PRELIMINARY EXAMINATIONS

| CHEMISTRY               |
|-------------------------|
| Higher 1                |
| Paper 1 Multiple Choice |

8872/01 21 September 2015 50 minutes

| Additional Materials: | Mult |
|-----------------------|------|
|                       |      |

Multiple Choice Answer Sheet Data Booklet

## READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid.

There are **thirty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the Multiple Choice Answer Sheet.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.

#### Multiple Choice Answer Sheet

Write your name, PDG and NRIC / FIN number, **including** the reference letter.

Shade the NRIC / FIN number.

Exam Title: JC2 PRELIM

Exam Details: <u>H1 Chemistry / Paper 1</u>

This document consists of **12** printed pages.

#### **Section A**

For each question there are four possible answers, **A**, **B**, **C**, and **D**. Choose the **one** you consider to be correct.

1 The relative isotopic mass values and percentage abundances of the isotopes of a sample of neon are shown in the table.

| relative isotopic mass | % abundance |
|------------------------|-------------|
| 20                     | 90.92       |
| 21                     | 0.26        |
| 22                     | 8.82        |

Based on these figures, what is the relative atomic mass of neon to two decimal places?

- **A** 20.16 **B** 20.17 **C** 20.18 **D** 20.20
- 2 Group I and Group II ionic hydrides react with water.

 $H^{-}(s) + H_2O(I) \longrightarrow OH^{-}(aq) + H_2(g)$ 

In an experiment, 1 g samples of each of the following ionic hydrides are treated with an excess of water.

Which sample produces the greatest mass of hydrogen?

- **A** LiH **B** NaH **C**  $CaH_2$  **D**  $MgH_2$
- 3 The equations for three reactions are given below.

 $Cl_2 + 2I^- \longrightarrow 2Cl^- + I_2$   $2Fe^{3+} + 2I^- \longrightarrow 2Fe^{2+} + I_2$  $Cl_2 + 2Fe^{2+} \longrightarrow 2Cl^- + 2Fe^{3+}$ 

What is the correct order of strength of  $C\Gamma$ ,  $Fe^{2+}$  and  $I^-$  as reducing agents?

|   | weakest          |                  | strongest        |
|---|------------------|------------------|------------------|
| Α | CI⊤              | Fe <sup>2+</sup> | Γ                |
| в | C/⁻              | I                | Fe <sup>2+</sup> |
| С | Fe <sup>2+</sup> | CΓ               | I_               |
| D | Ι¯               | CΓ               | Fe <sup>2+</sup> |

- 4 In which pair do both atoms, in their ground states, have the same number of unpaired electron?
  - A B, Ca B F, Na C Ne, P D Be, Si
- **5** Penicillins are important antibacterial agents. The active penicillins are derivatives of the compound below.



How many lone pairs of electrons are present in this molecule?



6 Water, methanol and methoxymethane, CH<sub>3</sub>OCH<sub>3</sub>, have similarly shaped molecules.

$$H H_3C H_3C H_3C CH_3$$

What is the strongest intermolecular force in water, methanol and methoxymethane?

|   | H <sub>2</sub> O  | CH₃OH             | CH <sub>3</sub> OCH <sub>3</sub> |
|---|-------------------|-------------------|----------------------------------|
| Α | hydrogen bonds    | hydrogen bonds    | hydrogen bonds                   |
| В | hydrogen bonds    | hydrogen bonds    | permanent dipoles                |
| С | permanent dipoles | permanent dipoles | induced dipoles                  |
| D | hydrogen bonds    | permanent dipoles | induced dipoles                  |

7 Some car paints contain small flakes of silica, SiO<sub>2</sub>.

In the structure of solid SiO<sub>2</sub>

- each silicon atom is bonded to *x* oxygen atoms,
- each oxygen atom is bonded to y silicon atoms,
- each bond is a *z* type bond.

What is the correct combination of x, y and z in this statement?

|   | X | У | Z        |
|---|---|---|----------|
| Α | 2 | 1 | ionic    |
| в | 2 | 1 | covalent |
| С | 4 | 2 | ionic    |
| D | 4 | 2 | covalent |

**8** 50.0 cm<sup>3</sup> of 2.0 mol dm<sup>-3</sup> hydrochloric acid was added to 50.0 cm<sup>3</sup> of 2.0 mol dm<sup>-3</sup> sodium hydroxide solution in a polystyrene beaker and the solution stirred. A temperature rise of 13.4 °C was recorded.

If the density and specific heat capacity of all solutions are assumed to be 1.00 g cm<sup>-3</sup> and 4.18 J g<sup>-1</sup> K<sup>-1</sup> respectively, what is the standard enthalpy change of neutralisation of hydrochloric acid obtained from this experiment?

- **A**  $-56 \text{ kJ mol}^{-1}$  **B**  $-28 \text{ kJ mol}^{-1}$  **C**  $+28 \text{ kJ mol}^{-1}$  **D**  $+56 \text{ kJ mol}^{-1}$
- **9** The conversion of diamond into graphite is an exothermic reaction. Diamond does not readily change into graphite.

Which reaction pathway correctly represents this conversion?



**10** At body temperature of 37 °C,  $K_w$  has a value of 2.4 x 10<sup>-14</sup>.

What is the concentration of OH<sup>-</sup> if the pH of blood is 7.4 under these conditions?

- **A** 7.00 x 10<sup>-7</sup>
- **B** 6.03 x 10<sup>-7</sup>
- **C** 2.51 x 10<sup>-7</sup>
- **D** 3.98 x 10<sup>-8</sup>
- **11** In which of the following would the equilibrium concentration of hydrogen remain unchanged if the pressure was changed?
  - **A**  $N_2(g) + 3H_2(g) = 2NH_3(g)$
  - **B**  $CO(g) + 2H_2(g) \implies CH_3OH(g)$
  - $\mathbf{C} \qquad 2\mathrm{HI}(\mathrm{g}) \implies \mathrm{H}_2(\mathrm{g}) + \mathrm{I}_2(\mathrm{g})$
  - **D**  $C_2H_6(g) = C_2H_4(g) + H_2(g)$
- 12 The table gives the concentrations and pH values of the aqueous solutions of two compounds D and E. Either compound could be an acid or a base.

|                                      | D    | E    |
|--------------------------------------|------|------|
| concentration / mol dm <sup>-3</sup> | 2.00 | 2.00 |
| рН                                   | 6    | 9    |

Student **P** concluded that **D** is a strong acid.

Student **Q** concluded that the extent of dissociation is lower in **E**(aq) than in **D**(aq).

Which of the students are correct?

- A both P and Q
- B neither P nor Q
- C P only
- **D Q** only

13 The decomposition

 $2N_2O_5 \longrightarrow 4NO_2 + O_2$ 

is first order with respect to  $N_2O_5$ .

In an experiment, 0.10 mol of pure  $N_2O_5$  was put into an evacuated flask. It was found that there was 0.025 mol of  $N_2O_5$  left 34 minutes later.

Which statement is true?

- A It took 17 minutes for the amount of NO<sub>2</sub> to rise from 0 mol to 0.10 mol.
- **B** There was 0.0625 mol of N<sub>2</sub>O<sub>5</sub> left after 17 minutes.
- **C** There was 0.0125 mol of  $N_2O_5$  left after 68 minutes.
- **D** The amount of NO<sub>2</sub> in the flask went up by four times in the first 34 minutes.
- **14** An autocatalytic reaction is a reaction in which one of the products catalyses the reaction.

Which curve will be obtained if the rate of reaction was plotted against time for an autocatalytic reaction?



- **15** The information relates to element *W*.
  - *W* is in Period 3 of the Periodic Table.
  - W has a lower electrical conductivity than Mg.
  - W forms only one chloride which can dissolve in water to give a strongly acidic solution.

What is the likely identity of *W*?

**A** Na **B** A*l* **C** Si **D** P

16 Consecutive elements X, Y and Z are in the third period of the Periodic Table. Element Y has the lowest first ionisation energy and the highest melting point of these three elements.

What could be the identities of **X**, **Y** and **Z**?

- **A** magnesium, aluminium, silicon
- **B** aluminium, silicon, phosphorus
- C silicon, phosphorus, sulfur
- **D** phosphorus, sulfur, chlorine
- **17** Which equation represents the reaction of sulfur dioxide with an excess of aqueous sodium hydroxide?
  - **A** SO<sub>2</sub> + NaOH  $\longrightarrow$  NaHSO<sub>3</sub>
  - **B** SO<sub>2</sub> + 2NaOH  $\longrightarrow$  Na<sub>2</sub>SO<sub>3</sub> + H<sub>2</sub>O
  - **C** SO<sub>2</sub> + 2NaOH  $\longrightarrow$  Na<sub>2</sub>SO<sub>4</sub> + H<sub>2</sub>
  - **D**  $2SO_2 + 2NaOH \longrightarrow Na_2S_2O_3 + H_2O + O_2$
- **18** Dipyridamole is a drug that is used to treat recovering stroke patients.



dipyridamole

What is the empirical formula of this drug?

**A**  $C_6H_9N_2O$  **B**  $C_6H_{10}N_2O$  **C**  $C_{11}H_{20}N_4O_2$  **D**  $C_{24}H_{40}N_8O_4$ 

**19** Ozone depletion potential (ODP) is a measure of the effectiveness of chlorofluoroalkanes in destroying stratospheric ozone.

In which sequence are compounds listed in increasing order of their ODPs?

| Α | $CHC_{l}F_{2}$ | < | $CH_3CCl_2F$   | < | $CCl_2FCClF_2$ |
|---|----------------|---|----------------|---|----------------|
| в | $CHC_{l}F_{2}$ | < | $CCl_2FCClF_2$ | < | $CH_3CCl_2F$   |
| С | $CCl_2FCClF_2$ | < | $CHC IF_2$     | < | $CH_3CCl_2F$   |
| D | $CH_3CCl_2F$   | < | $CCl_2FCClF_2$ | < | CHC1F2         |

**20** Aqueous silver nitrate was added at the same time to separate solutions of chloroethane and iodoethane. The first signs of a reaction were in the sample containing iodoethane.

Why was the reaction with iodoethane noticed first?

- The chloroethane also reacted with the aqueous silver nitrate but gave a soluble Α product.
- В The chloroethane reacted more slowly because the carbon-chlorine bond is less polar than the carbon-iodine bond.
- С The chloroethane reacted more slowly because the carbon-chlorine bond is longer than the carbon-iodine bond.
- The iodoethane reacted more quickly because the carbon-iodine bond is weaker D than the carbon-chlorine bond.
- 21 Which type of formula will show butanone and butanal as different compounds?

|   | empirical | molecular    | structural   | skeletal     |                         |
|---|-----------|--------------|--------------|--------------|-------------------------|
| Α | x         | x            | x            | $\checkmark$ | key                     |
| в | x         | x            | $\checkmark$ | $\checkmark$ | = shows difference      |
| С | x         | $\checkmark$ | $\checkmark$ | $\checkmark$ | x = shows no difference |
| D |           |              | $\checkmark$ | $\checkmark$ |                         |

22 4-oxopent-2-enoic acid has been found to inhibit the growth of Trypanosoma cruzi, a protozoan that causes the Chagas' disease.



4-oxopent-2-enoic acid

If 4-oxopent-2-enoic acid is reacted with NaBH<sub>4</sub>, what would be the  $M_r$  of the resultant product?

Α 102 В 104 С 116 D 118 23 The reaction scheme below represents the manufacture of the selective weedkiller MCPA.





Which type of reaction occurs in step I and in step II?

|   | step I       | step II   |
|---|--------------|-----------|
| Α | addition     | acid-base |
| В | addition     | reduction |
| С | substitution | acid-base |
| D | substitution | reduction |

- 24 Which compound will not give tri-iodomethane on warming with alkaline aqueous iodine?
  - A CH<sub>3</sub>COCHC/COCH<sub>3</sub>
  - B COCH<sub>2</sub>I
  - $\mathbf{C}$  I<sub>2</sub>CHCH(OH)CO<sub>2</sub>H
  - **D**  $CI_3CO_2CH_3$
- **25** Compound **Z**, C<sub>4</sub>H<sub>6</sub>O<sub>2</sub>, which is responsible for giving butter its characteristic flavor, gives the following experimental observations.
  - On reduction, **Z** produces  $C_4H_{10}O_2$ .
  - With hydrogen cyanide and aqueous sodium cyanide, **Z** produces C<sub>6</sub>H<sub>8</sub>N<sub>2</sub>O<sub>2</sub>.
  - Fehling's solution, on warming with **Z**, retains its blue colour.

What is the likely identity of compound Z?

- A CH<sub>2</sub>=CHCOCH<sub>2</sub>OH
- B CH<sub>3</sub>COCH=CHOH
- C CH<sub>3</sub>COCOCH<sub>3</sub>
- D CH<sub>3</sub>COCH<sub>2</sub>CHO

#### Section B

For each of the question in this section, one or more of the three numbered statements **1** to **3** may be correct.

Decide whether each of the statements is or is not correct (you may find it helpful to put a tick against the statements that you consider to be correct.)

The responses **A** to **D** should be selected on the basis of

| Α                      | В                        | С                        | D                 |
|------------------------|--------------------------|--------------------------|-------------------|
| 1, 2 and 3 are correct | 1 and 2 only are correct | 2 and 3 only are correct | 1 only is correct |

No other combination of statements is used as a correct response.

**26** Two massive explosions rocked the Chinese city of Tianjin on 12th August, 2015.

Three reactions took place.

Water used by fire-fighters touched calcium carbide, producing acetylene gas.

Reaction 1  $CaC_2(s) + 2H_2O(l) \longrightarrow Ca(OH)_2(s) + C_2H_2(g)$ 

Flames ignited the acetylene gas, causing the first explosion.

Reaction 2 
$$C_2H_2(g) + \frac{5}{2}O_2(g) \longrightarrow 2CO_2(g) + H_2O(I)$$

High temperatures caused nearby ammonium nitrate to detonate, causing the second explosion.

Reaction 3  $NH_4NO_3(s) \longrightarrow N_2(g) + 2H_2O(g) + \frac{1}{2}O_2(g)$ 

| compound                            | $\Delta H_{\rm f}^{\rm e}$ / kJ mol <sup>-1</sup> |
|-------------------------------------|---------------------------------------------------|
| CaC <sub>2</sub> (s)                | -60                                               |
| Ca(OH) <sub>2</sub> (s)             | -986                                              |
| $C_2H_2(g)$                         | +228                                              |
| CO <sub>2</sub> (g)                 | -394                                              |
| H <sub>2</sub> O(I)                 | -286                                              |
| NH <sub>4</sub> NO <sub>3</sub> (s) | -366                                              |

Using the standard enthalpy changes in the table, which statements are correct?

- **1** Reaction 1 gives off 80 kJ mol<sup>-1</sup> more energy than Reaction 3 under standard conditions.
- **2** The enthalpy change for Reaction 3 is  $-206 \text{ kJ mol}^{-1}$  under standard conditions.
- **3** Reaction 2 is the most exothermic reaction.

AJC JC2 PRELIM 2015

27 Concentrated sulfuric acid behaves as a strong acid when it reacts with water.

 $H_2SO_4(I) + aq \longrightarrow H^+(aq) + HSO_4^-(aq)$ 

The  $HSO_4^-$  ion formed behaves as a weak acid.

 $HSO_4^{-}(aq) = H^+(aq) + SO_4^{2-}(aq)$ 

Which statements are true for 1.0 mol dm<sup>-3</sup> sulfuric acid?

- 1 [H<sup>+</sup>(aq)] is high
- **2** [SO<sub>4</sub><sup>2–</sup>(aq)] is high
- **3**  $[HSO_4^{-}(aq)] = [SO_4^{2-}(aq)]$
- **28** The reaction of P and Q proceeds by the two-stage process shown.

$$P + Q \xrightarrow{\text{slow}} R$$
$$R + P \xrightarrow{\text{fast}} 2S$$

Which statements about this reaction are correct?

- 1 The initial rate of formation of *S* can be increased by adding *R*.
- 2 The relative molecular mass of *S* is higher than that of *P*.
- **3** The concentration of *R* will always exceed that of *S*.

**29** In an industrial process, heptane vapour is passed over a heated catalyst to make methylbenzene.

$$CH_3CH_2CH_2CH_2CH_2CH_3 \longrightarrow CH_3 + 4H_2$$

Under similar conditions, which of the C<sub>8</sub>H<sub>18</sub> isomers could give 1,4–dimethylbenzene?



1,4-dimethylbenzene



**30** Humulene can be extracted from carnation flower.



Which products are obtained from the reaction of humulene with hot acidified concentrated  $KMnO_4$ ?

- 1  $CH_3COCH_2CH_2CO_2H$
- 2 CH<sub>3</sub>COCH<sub>2</sub>CO<sub>2</sub>H
- 3 HO<sub>2</sub>CCH<sub>2</sub>C(CH<sub>3</sub>)<sub>2</sub>CO<sub>2</sub>H

# H1 Chemistry 8872

### AJC 2015 JC2 PRELIM

Paper 1 – 30 marks

| Question<br>Number | Key | Question<br>Number | Key |
|--------------------|-----|--------------------|-----|
| 1                  | С   | 16                 | D   |
| 2                  | Α   | 17                 | В   |
| 3                  | Α   | 18                 | В   |
| 4                  | В   | 19                 | Α   |
| 5                  | D   | 20                 | D   |
|                    |     |                    |     |
| 6                  | В   | 21                 | В   |
| 7                  | D   | 22                 | С   |
| 8                  | Α   | 23                 | С   |
| 9                  | D   | 24                 | D   |
| 10                 | В   | 25                 | С   |
|                    |     |                    |     |
| 11                 | С   | 26                 | С   |
| 12                 | В   | 27                 | D   |
| 13                 | Α   | 28                 | В   |
| 14                 | С   | 29                 | В   |
| 15                 | С   | 30                 | Α   |

| А | 6 |
|---|---|
| В | 9 |
| С | 8 |
| D | 7 |