Student solution and comments 2022 Prelim Y6 HL Math P1

Section A

1.		Comments
(a)(i)	$\sin A = \frac{1}{\sqrt{3}}$	Some students forgot to square root the side 2
	$\tan A = \frac{1}{\sqrt{2}}$	Students did not
(ii)	$\tan A = \frac{2 \tan \frac{A}{2}}{1 - \tan^2 \frac{A}{2}}$ Let $x = \tan \frac{A}{2}$: $\Rightarrow \frac{1}{\sqrt{2}} = \frac{2x}{1 - x^2}$ $1 - x^2 = 2\sqrt{2}x$ $x^2 + 2\sqrt{2}x - 1 = 0$ $x = \frac{-2\sqrt{2} \pm \sqrt{(2\sqrt{2})^2 - 4(-1)}}{2}$ $x = \frac{-2\sqrt{2} \pm \sqrt{12}}{2} = \frac{-2\sqrt{2} \pm 2\sqrt{3}}{2}$ $x = -\sqrt{2} + \sqrt{3} \Rightarrow \tan \frac{A}{2} = \sqrt{3} - \sqrt{2}$	Students did not realize that the quadratic equations can be solved using formula method, instead tried to factorize.

	$2\sin x = \tan x$	$\sin x$ was
		deleted on both
	$\sin x$	side, thus
	$2\sin x = \frac{1}{\cos x}$	missing a root
		which is
	$2 \sin u \cos u = 0$	$\sin x = 0$; do
	$2\sin x \cos x - \sin x = 0$	not cancel out
(h)	$\sin x (2 \cos x - 1) = 0$ $\sin x = 0 \Rightarrow x = 0$	on both sides of
(0)		the equation,
		instead shift
		everything to
		LHS and
	$2\cos x - 1 = 0 \Rightarrow x = \frac{1}{2} \Rightarrow x = \frac{\pi}{3} \text{ or } x = -\frac{\pi}{3}$	factorise.

2.		Comments
(a)	n = 10	Generally well done; remember number of terms in binomial expansion = n+1
	$r^{th}term = {\binom{10}{r}} (x^2)^{10-r} \left(\frac{k}{x}\right)^r = {\binom{10}{r}} (x)^{20-3r} k^r$	Generally well done
(b)	$20 - 3r = 14 \Rightarrow r = 2$ $\therefore {\binom{10}{2}} k^2 = 180 \text{ where } {\binom{10}{2}} = \frac{10!}{8! 2!} = \frac{9 \times 10}{2} = 45$ $45k^2 = 180$	
	$k^2 = 4 \Rightarrow k = 2$	

3.		Comments
(a)	$c(-2) + 6 = 0 \Rightarrow c = 3$	Generally well done
(b)	$y = \frac{1}{3}$	Generally well done

4.		Comments
(a)	$u_6 u_3$	Generally well
	$\frac{-0}{11} = \frac{-1}{11}$	done
	$\frac{1+5d}{1+2d}$	
	$\frac{1}{1+2d} - \frac{1}{1+d}$	
	$(1+2d)^2 = (1+5d)(1+d)$	
	$1 + 4d + 4d^2 = 1 + d + 5d + d^2$	
	$d^2 + 2d = 0$	
	d(d+2) = 0	
	d = 0 (rej.) $d = -2$	
(b)	$u_n = 1 + (n-1)(-2) = -17$	Generally well
	-2n = -20	done
	<i>n</i> = 10	
	$\sum_{i=1}^{10} \frac{1}{i} (-1) + (-2) + \cdots + (-17)$	Generally well
	$\sum_{r=1}^{\infty} u_r = 1 + (-1) + (-3) + \dots + (-1/)$	done; some

$\sum_{n=1}^{10} 10 (1 (1 - 1))$	students did not
$\sum u_r = \frac{1}{2} (1 + (-17))$	read the
r=1 Z	question
$\sum_{n=1}^{10}$	carefully and
$\sum u_r = -80$	tried to find sum
<i>r</i> =1	of GP

5.		Comments
(a)	Let P_n be the statement that $6^n - 1$ is divisible by 5 for	Generally well
	$n \geq 2$ and $n \in \mathbb{Z}^+$.	uone
	OR	
	Let P_n be the statement that $6^n - 1 = 5K, K \in \mathbb{Z}^+$, for	
	$n \ge 2$ and $n \in \mathbb{Z}^+$.	
	$P_2: 6^2 - 1 = 35 = 5 \times 7$	Some students
	$\therefore P_2$ is true.	accidentally wrote P1
		instead
	Assume P_k is true for some integer k	
	$6^k - 1 = 5Q, Q \in \mathbb{Z}^+$	
	P_{k+1} :	
	$6^{k+1} - 1 = 6(6^k) - 1$	
	=6(5Q+1)-1	Some students
	= 30Q + 5	assume LHS =
	=5(6Q)+5	manipulate
	=5(6Q+1)	from the
	$=5R$ $R \in \mathbb{Z}^+$	result. Always
		start from one side and show
		to the other.
		Conventionally
		start from LHS.
	Since P_2 is true, P_k is true $\Rightarrow P_{k+1}$ is true, by MI, P_n is	Some students
	true for $n \ge 2$ and $n \in \mathbb{Z}^+$.	used ambiguous
		phrasing.
	* Make sure initial step is true (P_2 is true);	
	inductive step (P_k is true \Rightarrow P_{k+1} is true) is true, these	
	two are a pair with "if then" relationship.	

6.		Comments	
(a)	Assume $a + b < 2\sqrt{ab}$ for $a, b \in \mathbb{Z}^+$	Some students did not write	
		down the correct negation.	
		Conditions should be kept the	
		same (a, b are positive	
		integers and not equal), while	
		the therefore statement is	

	negated. (you can seen < as the complement set of \geq)
$(a+b)^{2} < 4ab$ $a^{2} + 2ab + b^{2} < 4ab$ $a^{2} - 2ab + b^{2} < 0$	
$(a-b)^2 < 0$	
However, $(a-b)^2 \ge 0$ and since $a \ne b$ So $(a-b)^2 > 0$ (contradiction) By contradiction, $a+b \ge 2\sqrt{ab}$	The contradiction should not allow some cases to be true. Eg. Some students assumed $a+b \le 2\sqrt{ab} \Rightarrow (a-b)^2 \le 0$ and contradiction is $(a-b)^2 \ge 0$, allowing $(a-b)^2 = 0$ to be true.

7.		Comments
(a)	Point of inflexion occurs when $f''(a) = 0$ and $f''(x)$	Well done
	changes sign at $x = a$.	
	Minimal point of $f'(x)$ satisfy the condition, therefore	
	x = 3 is the point of inflexion.	
(b)	$\int_0^1 f'(x) dx = f(1) - f(0)$	Well done
	= f(1) - 1 = 1	
	$\Rightarrow f(1) = 2$	
	$\int_{1}^{4} f'(x)dx = f(4) - f(1) = -5$	Quite a number of
	f(4) = f(1) - 5	students forgot
	f(4) = 2 - 5 = -3	the integral
		result is the
		signed area
		under graph.

8.		Comments
(a)	Method 1: using geometry formula	Well done
	rectangle area + trapezium area =1	
	$k + \frac{1}{2}(k + 2k)(1) = 1$	
	$k + \frac{3}{2}k = 1$	
	$\frac{5}{2}k = 1$	

	$k = \frac{2}{5}$	
	Method 2: using integration	
	$\int_{2}^{3} k dx + \int_{3}^{4} k(x-2) dx = 1$	
	$\left[kx\right]_{2}^{3} + k\left[\frac{x^{2}}{2} - 2x\right]_{3}^{4} = 1$	
	$3k-2k+k\left(8-8-\left(\frac{9}{2}-6\right)\right)=1$	
	$k + \frac{3}{2}k = 1$	
	$\frac{5}{2}k = 1$	
	$k = \frac{2}{5}$	
(b)	Area of rectangle = $\int_{2}^{3} k dx = \frac{2}{5} < \frac{1}{2}$	
	$\frac{2}{5} + \int_{3}^{m} \frac{2}{5} (x-2) dx = \frac{1}{2}$	Some students forgot to add
	$\frac{2}{5} \left[\frac{x^2}{2} - 2x \right]_3^m = \frac{1}{10}$	the area under graph from x=2 to 3 to the 0.5
	$\frac{m^2}{2} - 2m - \left(\frac{9}{2} - 6\right) = \frac{1}{4}$	probability
	$2m^2 - 8m + 6 = 1$	
	$2m^2 - 8m + 5 = 0$	
	$m = \frac{8 \pm \sqrt{64 - 40}}{4}$	Some students forgot to reject
	$m = \frac{8 \pm \sqrt{24}}{4} = \frac{4 \pm \sqrt{6}}{2}$	one answer
	$m = \frac{4 + \sqrt{6}}{2}$	
	since $m > 3$	

9.		Comments
(a)	$\int x^3 e^x dx = x^3 e^x - \int 3x^2 e^x dx$	Well done. A few
		students did not
	$= x^3 e^x - 3 \left[x^2 e^x dx \right]$	show any working
	$3 \times 0 \begin{bmatrix} 2 \times 1 & x \end{bmatrix}$	for second and
	$= x^3 e^x - 3 \left[x^2 e^x - \int 2x e^x dx \right]$	third integration by
	$-r^{3}a^{x} - 3r^{2}a^{x} + 6\int ra^{x}dr$	parts. Do be
	$-x e - 5x e + 0 \int x e dx$	reminded that all
		steps should be

		shown for show
		question.
	$=x^3e^x-3x^2e^x+6\left[xe^x-\int e^xdx\right]$	
	$= x^3 e^x - 3x^2 e^x + 6x e^x - 6e^x + C$	
	$=e^{x}(x^{3}-3x^{2}+6x-6)+C$	
(b)	$x = \sqrt{t} \Longrightarrow x^2 = t$	
	2xdx = dt	
	$\int_{0}^{2} t e^{\sqrt{t}} dt = \int_{0}^{\sqrt{2}} x^{2} e^{x} 2x dx = 2 \int_{0}^{\sqrt{2}} x^{3} e^{x} dx$	Quite a number of students forgot to substitute the limits while t is replaced by x
	$=2[e^{x}(x^{3}-3x^{2}+6x-6)]_{0}^{\sqrt{2}}$	
	$= 2[e^{\sqrt{2}}(2\sqrt{2}-6+6\sqrt{2}-6)-(-6)]$	Quite a number of students did not realize that the last 6 does not have a factor of $e^{\sqrt{2}}$.
	$=2e^{\sqrt{2}}(8\sqrt{2}-12)+12$	

Section **B**

11.		Comments
(a)	$h(x) = (\sin(2x) + \cos(2x))^2 = (\sin(2x))^2 + 2\sin(2x)\cos(2x) + (\cos(2x))^2 = 1 + \sin(4x)$	Well done
(b)(i)	$\sin x \rightarrow \sin(4x)$: stretch the graph of $y = \sin x$ by factor of ¼ units parallel to the x-axis. $\sin(4x) \rightarrow \sin(4x) + 1$: translate the graph of $y = \sin(4x) + 1$ by 1 unit in the positive y-axis.	Well done

	f(x) is an even function	
	OR graph is <u>symmetrical about the y-axis</u> as shown in the	
	diagram,	
	So $f(-x) = f(x)$,	
	function must be even.	Generally well done.
(b)	$\lim_{x \to \infty} \frac{x^2 - 1}{x^2 + 1} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x^2}} = 1$	
	Or apply L'hopital's rule $\lim_{x \to \infty} \frac{x^2 - 1}{x^2 + 1} = \frac{\infty}{\infty} \stackrel{H}{=} \lim_{x \to \infty} \frac{2x}{2x} \stackrel{H}{=} \lim_{x \to \infty} \frac{2}{2} = 1$	
	$\arcsin(1) = \frac{\pi}{2}$	
	So horizontal asymptote $y = \frac{\pi}{2}$	Students missed crucial steps or wrote mathematically incorrect notation like $\frac{1}{\infty}$
(c)	(i) $f'(x) = \frac{1}{\sqrt{1 - \left(\frac{x^2 - 1}{x^2 + 1}\right)^2}} \frac{(x^2 + 1)(2x) - (x^2 - 1)(2x)}{(x^2 + 1)^2}$	
	Take out $\frac{1}{(x^2+1)^2}$ from inside the square root in the denominator $f'(x) = \frac{1}{\sqrt{(x^2+1)^2 - (x^2-1)^2}} \frac{4x}{(x^2+1)}$ $f'(x) = \frac{1}{\sqrt{4x^2}} \frac{4x}{(x^2+1)}$	
	$f'(x) = \frac{2x}{\sqrt{x^2}(x^2 - 1)} = \frac{2x}{ x (x^2 - 1)}$	Students who were unable to do the question did not apply chain rule correctly.
	(ii) $\sqrt{x^2} = x = 2$	
	$f'(-2) = \frac{-4}{2(4+1)} = -\frac{2}{5}$	
	Since $f'(x) < 0$, f is decreasing at $x = -2$.	Generally well done
(d)	$f(0) = \arcsin\left(\frac{0-1}{0+1}\right) = \arcsin(-1) = -\frac{\pi}{2}$	

		Generally well done
	$\begin{array}{c} \chi = -1 y \chi = 1 \\ 1 1 1 1 1 1 1 1 1 $	
(e)	(i)let $y = g(x)$, try to express x as the subject	
	$y = \arcsin\left(\frac{x^2 - 1}{x^2 + 1}\right)$	
	$\sin y = \frac{x^2 - 1}{x^2 + 1}$	
	$x^2 \sin y + \sin y = x^2 - 1$	
	$x^2(\sin y - 1) = -1 - \sin y$	
	$x^{2} = \frac{1 + \sin y}{1 - \sin y}$ or $x^{2} = \frac{-1 - \sin y}{\sin y - 1}$	
	$x = \pm \sqrt{\frac{1 + \sin y}{1 - \sin y}}$	
	Since $x \ge 0$, $x = \sqrt{\frac{1 + \sin y}{1 - \sin y}}$	
	$g^{-1}(x) = \sqrt{\frac{1 + \sin x}{1 - \sin x}}$	Generally well done.

10		Commonto
12.		Comments
(a)	1/4 match $1/4 match$ $3/4 no match$ $1/4 match$ $1/4 match$ $1/4 match$ $3/4 no match$ $3/4 no match$	Generally well done
(b)	P(at least one match)= 1- P(no match in 4 rolls)	
	$=1-\left(\frac{3}{4}\right)^{4}$	
	$=1 - \frac{81}{256} = \frac{175}{256}$	The easiest method was to take complement. Students who computed the answer by dividing into cases found difficulty in getting the answers.
(c)	$P(X=0) = \left(\frac{n-1}{n}\right)^n$	Generally well done
(d)	$P(X \ge 1) = 1 - P(X = 0) = 1 - \left(\frac{n-1}{n}\right)^n$	Generally well done
	$=1-\left(1-\frac{1}{n}\right)^n$	
(e)	$e = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \dots$ from formula booklet	
	$\frac{1}{e} = e^{-1}$	
	Substitute $x = -1$ $\frac{1}{e} = 1 + (-1) + \frac{(-1)^2}{2!} + \frac{(-1)^3}{3!} + \frac{(-1)^4}{4!} + \frac{(-1)^5}{5!} + \dots$	Generally well done for those who were aware of the standard formula.
	$\frac{1}{e} = \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \dots$	

(f) (i)	$\left(1-\frac{1}{2}\right)^n$	
(')	$\binom{n}{n}$	
	$=1 - \binom{n}{1} \left(\frac{1}{n}\right) + \binom{n}{2} \left(\frac{1}{n}\right)^2 - \binom{n}{3} \left(\frac{1}{n}\right)^3 + \binom{n}{4} \left(\frac{1}{n}\right)^4 - \binom{n}{5}$	
	$= \binom{n}{1} \left(\frac{1}{n}\right) - \binom{n}{2} \left(\frac{1}{n}\right)^2 + \binom{n}{3} \left(\frac{1}{n}\right)^3 - \binom{n}{4} \left(\frac{1}{n}\right)^4 + \binom{n}{5} \left(\frac{1}{n}\right)^4 + \binom{n}$	
	$=\frac{n}{1}\left(\frac{1}{n}\right) - \frac{n(n-1)}{2!}\left(\frac{1}{n}\right)^2 + \frac{n(n-1)(n-2)}{3!}\left(\frac{1}{n}\right)^3$	
	$-\frac{n(n-1)(n-2)(n-3)}{3!}\left(\frac{1}{n}\right)^4 + \dots$	
	Factorize out an n from each factor in the numerator $= \frac{n^2 \left(1 - \frac{1}{n}\right)}{2!} \left(\frac{1}{n^2}\right) + \frac{n^3 \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right)}{3!} \left(\frac{1}{n^3}\right)$	Tedious working. Students may not have had time to complete the working for this question.
	$-\frac{n^{4}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\left(1-\frac{3}{n}\right)}{3!}\left(\frac{1}{n^{4}}\right)+\dots$	
(f) (ii)	$\lim_{n \to \infty} P(X \ge 1) = \lim_{n \to \infty} \left[1 - \left(1 - \frac{1}{n}\right)^n \right]$	
	$\lim_{n \to \infty} \left[1 - \left(1 - \frac{1}{n} \right)^n \right]$	
	$=\lim_{n\to\infty}1-\frac{n^{2}\left(1-\frac{1}{n}\right)}{2!}\left(\frac{1}{n^{2}}\right)+\frac{n^{3}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)}{3!}\left(\frac{1}{n^{3}}\right)-$	
	$\frac{n^4 \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \left(1 - \frac{3}{n}\right)}{3!} \left(\frac{1}{n^4}\right) + \dots$	
	And cancel out the identical powers of n in each term	Generally well done.
	$=\lim_{n\to\infty}1-\frac{n^{2}(1-0)}{2!}\left(\frac{1}{n^{2}}\right)+\frac{n^{2}(1-0)(1-0)}{3!}\left(\frac{1}{n^{2}}\right)$	crucial steps resulting in loss of marks.
	$-\frac{n^4(1-0)(1-0)(1-0)}{3!}\left(\frac{1}{n^4}\right)+\dots$	
	$= \lim_{n \to \infty} \left[1 - \left(\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots \right) \right]$	
	$=1-\frac{1}{e}$	