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1.    ALGEBRA 

Quadratic Equation 

For the quadratic equation  ax 2 + bx + c = 0, 
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2.    TRIGONOMETRY 

Identities 

sin 2 A  +  cos 2 A  =  1 

sec 2 A  =  1  +  tan 2 A 

cosec 2 A  =  1  +  cot 2 A 

sin (A ± B) = sin A cos B ± cos A sin B 

cos (A ± B) = cos A cos B  sin A sin B 

tan ( A ± B ) = tan tan

1 tan tan 

A B

A B

  

sin 2A = 2 sin A cos A 

cos 2A = cos2 A – sin2 A = 2cos2 A – 1 = 1 – 2 sin2 A 

tan 2A =  
2

2 tan

1 tan

A

A−
 

 

Formulae for   ABC 

sin sin sin

a b c

A B C
= =  

a 2  =  b 2  +  c 2  −  2bc cos A 

  =  2
1

bc sin A 
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1 A company purchased a colour copier machine at a cost of $8500. The value of this 

machine decreases with time such that its value, $V, after t months of usage is given by 

8500 ktV e−= , where k is a constant.  

   

 (a) The value of the copier machine is expected to fall to $6400 after 8 months of usage. 

Estimate the value, to the nearest dollar, of the machine after 2 years of usage.   [4] 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 
(b) Copier machines are to be replaced when its value reaches 

1

7
 of its initial value.  

The company’s manager, Mrs Lee, claims that the machine will last for at least 

5 years before a replacement is due. Showing all necessary working, explain 

whether you agree with Mrs Lee.    [2] 
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2 (a) Differentiate 2 sin
2

x
x .   [2] 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 
(b) Use the result in part (a) to evaluate 

π

0
3 cos

2

x
x dx , leaving your answer as an exact 

value in the form πa b− , where a and b are constants.   [4] 
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3 It is given that 3 2f ( ) 2 3x x px qx= + + + , where p and q are constants, has a factor of 

2 1x −  and leaves a remainder of 75−  when divided by 2x + . 

  

 (a) Show that 15p = −  and 1q = .   [4] 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 (b) Solve the equation f ( ) 0x = .   [4] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (c) Hence, solve the equation  2 3 0k k pk q k+ + + = .    [2] 
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4 The diagram shows a vertical cross section of a tent in which AB = 2 m, BC = 3 m and

angle angle BAD BCD = = . The tent is symmetrical about its vertical height AD and 

it is set up on horizontal ground. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a) Show that 3sin 2cosAD  = + .   [2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) Express AD in the form ( )cosR  − , where R > 0 and 0 90    .    [3] 
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3 m 
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 (c) Given that the vertical height of the tent is 3.45 m, calculate the value of  .     [2] 

 

 

 

 

 

 

 

 

 

 

 

 

 (d) Find the value of   for which AD is a maximum.   [2] 
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5 (a) Given that 
2log 10p A =  and log 2p B = , find the value of log A pB .   [3] 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 (b) Solve ( )3 6 5 3x x−= − .   [4] 
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80 m 

37 m 

P 

6 The diagram shows a wind turbine with propeller-like blades that have a length of 37 m 

each. Wind turns the blades that spin around a rotor in the centre to generate electricity. 

The height, h m, of the tip of each blade above the ground, t seconds after leaving a 

particular point P, can be modelled by 37cosh a bt= − , where a and b are constants. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The centre of the wind turbine’s rotor is 80 m from the ground and on average, the blades 

rotate in an anti-clockwise direction at a rate of 1 revolution every 8π seconds. 

 
(a) Show that a = 80 and 

1

4
b =  .   [2] 

 

 

 

 

 

 

 

 

 

 (b) Find the time taken, in seconds, for the blade to first reach a height of 89 m above 

ground after leaving P.    [3] 
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7 The equation of a curve is 5lny x= . The tangent to the curve at 2x e=  intersects the 

x-axis at A.  

  

 (a) Show that the coordinates of A are ( )2 ,  0e− .   [5] 

 

 

 

 

 

 (b) Find the area bounded by the tangent, the line 2x e=  and the x-axis.     [2] 
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8  

 

 

 

 

  

 

 

 

 
The diagram shows part of the curve 

7

3 1
y

x
=

−
 and the line 4 17 3y x= − , where the 

curve intersects the line at points P and Q. 

Find, showing all necessary working, the area of the shaded region that can be expressed 

in the form ln 7a b− , where a and b are constants.     [6] 
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9 PQRS is a rectangle with PQ = x cm and QR = y cm. It is inscribed in a semicircle with 

centre O and radius 10 cm.  

  

 

 

 

 

 

 

 

 

 
(a) Show that the area of the rectangle, A cm2, is given by 

2400
2

x
A x= − .    [2] 

 

 

 

 

 

 

 

 

 

 

 

 (b) Given that x can vary, find the value of x for which the area of the rectangle is 

stationary. Leave your answer in the form a b , where a and b are constants.    [4] 
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 (c) Explain why the value of x in part (b) gives the largest possible value of A and 

hence, find the maximum area of rectangle PQRS.    [3] 
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10 AB is a chord of the circle C1, where the coordinates of A and B are ( )2,  5  and ( )6,  3  

respectively. The line 5y x= −  passes through the centre of the circle. 

  

 (a) Find the coordinates of the centre of C1.      [4] 
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 (b) Find the equation of the circle in the form 2 2 0x y px qy r+ + + + = , where p, q and 

r are integers.    [3] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 (c) Another circle C2 with centre ( )2,  3  passes through the centre of C1.  

Explain if the C2 lies entirely within C1.   [2] 
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11 (a) Prove that 
sin 2 cos 2 1

tan
sin 2 cos 2 1

x x
x

x x

− +
=

+ +
.   [4] 
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(b) Hence, solve the equation 2sin 2 cos 2 1

5 2sec
sin 2 cos 2 1

x x
x

x x

− +
= −

+ +
 for 0 360x    .     [4] 
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12 Water is dispensed at a constant rate into an empty paper cup in the form of an inverted 

cone of height 10 cm and radius 4 cm. After t seconds, the depth of the water in the conical 

cup is x cm. 

  

 

 

 

 

 

 

 

 

 
(a) Show that the volume, V cm3, of water in the cup is given by 

34π

75

x
.    [2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) The water dispenser is a cylindrical container with radius 12 cm.  

Given that the depth of water in the cylinder dispenser decreases at a constant rate 

of 0.0035 cm/s, find the rate of increase in the volume of water dispensed into the 

conical cup, leaving your answer in terms of π .    [2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 cm 

10 cm 

x cm 
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END OF PAPER   

 (c) Hence, find the rate of increase in the depth of water in the conical cup when the 

volume of water dispensed is 
5π

6
 cm3.      [4] 
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Answer Key 

Qn No. Answers 

1 
 

(a) 

(b) 

$3628 

Disagree. 

2 (a) 

(b)  

cos 2sin
2 2

x x
x +  

6π 12−  

3 (b) 

(c) 

x = 7.41 or –0.405 

k = 0.25 or 54.8 

4 (b) 

(c) 

(d) 

( )13 cos 56.3 −   

73.2  

56.3  

5 

 

(a) 

 

(b) 

3

5
 

x = 0 or 1.46 

6 (b) t = 7.27 s 

7 (b) 2 210  or 73.9 unitse  

8 7
8 ln 7

3
−  

9 (b) 

(c) 

10 2  

Maximum area  100 cm2 

10 (a) 

(b) 

(c) 

( )3,2  

2 2 6 4 3 0x y x y+ − − + =  

C2 lies entirely within C1 

11 (b) 45 ,123.7 ,225 ,303.7x =      

12 (b) 

(c) 

3 363π
0.504π cm /s  or  cm /s

125
 

0.504 cm/s 

 

 


